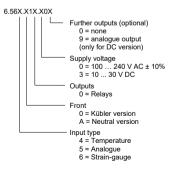


CODIX 564



Process Controllers

for Temperature Sensors

for Thermocouples J, K, N, R, S, T, E, B mV range sensors Resistance thermometers PT100 Resistance sensors up to 500 Ω

Order code

pulses for automation

Table of Contents (German is the original version.)

1	Preface		
2	Safety instructions and Warnings	3	
	2.1 Use according to the intended purpose	3	
	2.2 Mounting in a control panel		
	2.3 Electrical Installation	4	
	2.4 Cleaning and maintenance	4	
3	Description	5	
4	Display/Operating elements	5	
5			
6	6 Connections		
7	Operating concept (Operating mode)	7	
8	Programming	8	
9	Function Groups	10	
	9.1 Help Texts (running text)	10	
	9.2 Signal inputs	10	
	9.3 User Linearisation (±100 mV / 500 Ω)	12	
	9.4 Function Multifunction Key (MP-Key) and Multifunction inputs (MP-INP)	14	
	9.4.1 Multifunction Key	15	
	9.4.2 Multifunction Inputs	15	
	9.5 Limit Value (Alarm) Monitoring	16	
	Monitoring of Measuring Circuit	18	
11	Technical Data	19	
	11.1 General Data	19	
	11.2 Measuring signal inputs	19	
	11.3 Control Inputs MPI 1 / MPI 2	19	
	11.4 Alarm outputs	19	
	11.5 Supply voltage 11.6 Sensor Supply Voltage	19 19	
	11.7 Climatic Conditions	20	
	11.8 EMC	20	
	11.9 Device Safety	20	
	11.10Mechanical Data	20	
	11.11Connections	20	
12	Dimensional Drawings	20	
	Help Texts	21	
		2 1	

1 Preface

Please read this instruction manual entirely and carefully before installation and start-up. Please observe all warnings and advice, both for your own safety and for general plant safety. If the device is not used in accordance with this instruction manual, then the intended protection can be impaired.

2 Safety instructions and Warnings

Please use the device only if its technical condition is perfect. It should be used only for its intended purpose. Please bear in mind safety aspects and potential dangers and adhere to the operating instructions at all times. Defective or damaged devices should be disconnected from the mains immediately and taken out of operation. The device shall not be opened. Use the repair service of the manufacturer. Only connect the device to the electricity networks provided to that purpose.

The safety of the system in which the device is integrated is the responsibility of the installer.

Disconnect all electricity networks prior to any installation or maintenance work.

Use exclusively cables approved in your country and designed for your temperature and power ranges. Installation and service work shall be carried out exclusively by qualified personnel.

The device must compulsorily be protected with approved external fuses. The value of these fuses can be found in the technical information.

This symbol is used on the device to remind of the existence of dangers, which are referred to in this manual.

2.1 Use according to the intended purpose

The purpose of the Process Control devices is to display measured values, as well as to monitor limit values (alarms). The application areas for this device lie in industrial processes and controls. The application area for this device lies in industrial processes and controls, in the fields of manufacturing lines for the metal, wood, plastics, paper, glass, textile and other like industries. Overvoltages at the terminals of the device must be kept within the limits of Over-voltage Category II. The device must only be operated when mounted in a panel in the correct way and in accordance with the section "Technical Data".

The device is not suitable for use in hazardous areas and for areas excluded in EN 61010 Part 1. If the device is used to monitor machines or processes in which, in the event of a failure of the device or an error made by the operator, there might be the risk of damaging the machine or causing an accident to the operators, it is your responsibility to take the appropriate safety measures.

The device has been designed for indoor operation. It may nevertheless be used outdoors, provided the technical data is adhered to. In this case, take care to provide suitable UV protection.

2.2 Mounting in a control panel

Mount the device away from heat sources and avoid direct contact with corrosive liquids, hot steam or similar.

Provide a free space of 10mm all around the device for its ventilation.

The device should be mounted so that the terminals are out of the reach of the operator and cannot be touched by him. When mounting the device, consider the fact that only the front side is classified as accessible for the operator.

Mounting instructions

- 1. Remove the mounting clip from the device.
- Insert the device from the front into the panel cut-out, ensuring the front-panel gasket is correctly seated.
- Slide the fixing clip from the rear onto the housing, until the spring clamps are under tension and the upper and lower latching lugs have snapped into place.

Note: In case of proper installation, IP65 can be reached on the front side.

2.3 Electrical Installation

The device must be disconnected from any power supply prior to any installation or maintenance work. Make sure that no more voltages LIABLE TO CAUSE AN ELECTROCUTION are present.

AC-powered devices must only be connected to the low-voltage network via a switch or circuit breaker installed close to the device and marked as their disconnecting device.

Installation or maintenance work must only be carried out by qualified personnel and in compliance with the applicable national and international standards.

Take care to separate all extra-low voltages entering or exiting the device from hazardous electrical conductors by means of a double or reinforced insulation (SELV circuits).

The device must be protected externally for its proper operation. Information about the prescribed fuses can be found in the technical information.

The relay outputs are not protected internally in the device. Without suitable protection of the relay outputs, undesired heat development or even fire may occur. The relay outputs must be protected externally by the manufacturer of the plant. It must also be made sure that, even in case of a malfunction, the values stated in the technical data are under no circumstances exceeded.

- During installation, make sure that the supply voltage and the wiring of the output contacts are both fed from the same mains phase, in order not to exceed the maximum permitted voltage of 250V.
- The cables and their insulation must be designed for the planned temperature and voltage ranges. Regarding the type of the cables, adhere to the applicable standards of the country and of the plant. The cross sections allowed for the screw terminals can be found in the technical data.
- Before starting the device, check the cables for proper wiring and tightening. The screws of

unused screw terminals must be screwed to the stop, so that they cannot loosen and get lost.

 The device has been designed for overvoltage category II. If higher transient voltages cannot be excluded, additional protection measures must be taken in order to limit the overvoltage to the values of CAT II.

Advice on noise immunity

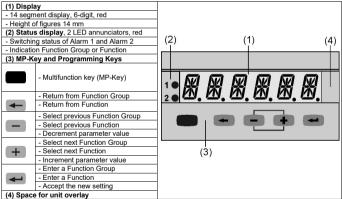
All connections are protected against external sources of interference. The installation location should be chosen so that inductive or capacitive interference does not affect the device or its connecting lines! Interference (e.g. from switchmode power supplies, motors, clocked controllers or contactors) can be reduced by means of appropriate cable routing and wiring.

Measures to be taken:

- Use only shielded cable and control lines. Connect shield at both ends. The conductor cross-section of the cables should be a minimum of 0.14 mm².
- The shield connection to the equipotential bonding should be as short as possible and with a contact area as large as possible (lowimpedance).
- Only connect the shields to the control panel, if the latter is also earthed.
- Install the device as far away as possible from noise-containing cables.
- Avoid routing signal or control cables parallel to power lines.

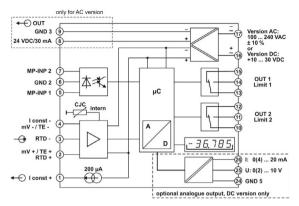
2.4 Cleaning and maintenance

The front side of the unit should only be cleaned using a soft damp (water!) cloth. Cleaning of the embedded rear side is not planned and is the responsibility of the service personnel or of the installer.

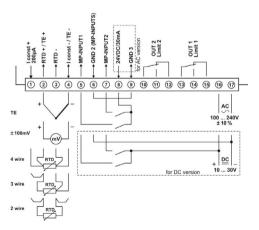

In normal operation, this device is maintenancefree. Should the device nevertheless not operate properly, it must be sent back to the manufacturer or to the supplier. Opening and repairing the device by the user is not allowed and can adversely affect the original protection level.

3 Description

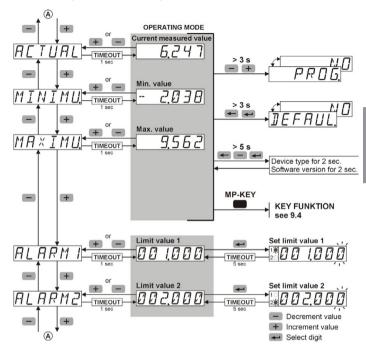
Digital panel meter for displaying measured values, as well as monitoring limit values in industrial applications.


- · 6-digit 14-segment LED display, 14 mm, for displaying measured values and dialogs
- · Running text can be switched on as Help Text
- · Language for the Help Text selectable as English or German
- · Signal input for thermocouples J, K, N, R, S, T, E, B or mV range sensors
- Signal input for resistance thermometer (RTD) PT100 or resistance sensors up to 500 Ω
- · Sampling rate 10 readings per second
- · Digital filter (1st order) for smoothing display fluctuations with unstable input signals
- Customised linearisation for 100 mV and 500 Ω measuring ranges possible
- · MIN/MAX memory function
- · 2 Relay outputs (changeover contacts) for limit monitoring
- · Start delay for relay outputs after Power ON
- Versions for supply voltage 10 ... 30 V DC and 100 ... 240 V AC ± 10%
- Auxiliary power supply 24 V / 30 mA with AC supply
- · Programmable via the front keys
- · Multifunction key and two multifunction inputs, function programmable

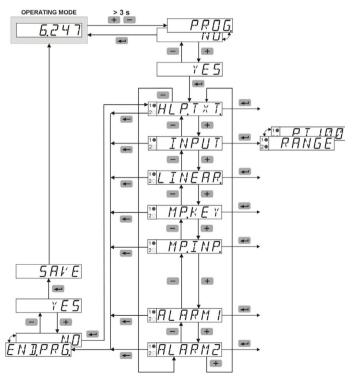
4 Display/Operating elements



To enter the Programming Menu	- + + > 3 sec
To display Device Type and Software Version	← + − + ← > 5 sec
To restore factory default settings	+ + > 3 sec


5 Block diagram

7 Operating concept (Operating mode)


8 Programming

A

To enter the Programming Menu	- + + > 3 sec
-------------------------------	---------------

- · During programming the relays are inactive (not energised).
- When quitting the programming menu via SAVE, the minimum and maximum vales are reset (cleared).

Entering the Programming Menu / Selecting Function Group / Quitting the Programming menu

Parameters Function Groups Function + Select _ parameters + rasaa RANGE R [7 1 • 2 0 10 ΝP 11 T 10 -+ + Я : + -F PT 10 \overline{n} Set value 1. ØП **√** 1● П П M ПΙ M 20 ł Decrement value + Increment value Select digit ▶1● 201 Î 1 IT + Select + parameters -ПН 50H 10 60H 20 v + + +

Selecting Function / Setting Parameters / Accepting Parameters

9 Function Groups

Factory settings are highlighted grey.

9.1 Help Texts (running text)

HLPTXT.	Help Text menu
HLPTXT	Select Help Text
<u></u> ΠΕΕ	ON - a running text that has started can be aborted with any programming key OFF
SLLANG.	Select language for Help Text
EN	English
JΕ	Deutsch (German)

9.2 Signal inputs

5.2 Signal inputs			
INPUT	Menu Input Signal		
RANGE	Select Temperature probe		
PT 100	Resistance thermometer RTD Pt 100 [-200.0 +850.0°C]		
0.500R	Resistance 0 500 Ω		
100MV	Millivolt -100 +100 mV		
Т С. В	Thermocouple Pt30Rh-Pt6Rh		
T E.J	Thermocouple Fe-CuNi		
T E.K	Thermocouple NiCr-Ni		
T E.N	Thermocouple NiCrSi-NiSi		
T E.R	Thermocouple Pt13Rh-Pt		
T C. S	Thermocouple Pt10Rh-Pt		
Τ [. Τ	Thermocouple Cu-CuNi		
T Ľ.E	Thermocouple NiCr-CuNi		
For PT100			
UNIT	Select temperature units		
0[Temperature in °C		
οF	Temperature in °F		
METH.	Select probe connection		
ZWIRE	2-wire connection		
<u> </u>	3-wire connection		
HNIRE	4-wire connection		
Only for 2-WIRE			

RWIRE	Select wire resistance of one connection wire
0.0	Input range 0.0 25.0 Ω
RJJUST	Select Correction Value (Offset)
0.0	Input range -99.9 +99.9°C Input range -99,9 +99,9°F
]P	Select resolution
0.0	0 °C/°F 0.0 °C/°F
for 0.500R	
LOLIM	Select lower measuring range limit
0.0	Input range 0.0 525.0 Ω
<u>HILIM</u>	Select upper measuring range limit
5250	Input range 0.0 525.0 Ω
METH	Select probe connection
2.WIRE	2-wire connection
<u> </u>	3-wire connection
HHIRE	4-wire connection
Only for 2WIRE	
RWIRE	Select wire resistance of <u>one</u> connection wire
0.0	Input range 0.0 25.0 Ω
JP.	Select decimal point
	(optical function only)
0.0	0 0.0
	0.00
	0.000 0.0000
	0.00000
INPLO.	Select input low value
0.0	Input range 0.0 525.0 Ω
]] I S P.L D.	Select display low value for INP.LO.
0.0	Input range -1999999 +9999999 and DP
INP.HI.	Select input high value
5000	Input range 0.0 … 525.0 Ω
]]ISP.HI.	Select display high value for INP.HI.
5000	Input range -199999 +999999 and DP

for 100 mV		
LOLIM.	Select lower measuring range limit	
- 105.00	Input range -105.00 +105.00 mV	
HILIM.	Select upper measuring range limit	
105.00	Input range -105.00 +105.00 mV	
] <i>P</i> .	Select decimal point (optical function only)	
0.0 0	0 0.0 0.00 0.00 0.000 0.0000 0.0000	
INPLO	Select input low value	
- 100.00	Input range -105.00 +105.00 mV	
]] I S P.L D.	Select display low value for INP.LO.	
- 100.00	Input range -1999999 +9999999 and DP	
INP.HI	Select input high value	
100.00	Input range -105.00 +105.00 mV	
]]ISP.HI.	Select display high value for INP.HI.	
100,00	Input range -1999999 +9999999 and DP	
for TC.x	Select Temperature unit Temperature in °C	
٥F	Temperature in °F	
REF.JUN.	Select cold (reference) junction compensation	
INTERN	Internal compensation External compensation	
<u>E×TERN</u>		
JUNTMP	Select external junction temperature	
0.0	Input range -99.9 … +99.9°C or -147.8 … +212.0°F	
RJJUST	Select Correction Value (Offset)	
0.0	Input range -99.9 +99.9°C Input range -99,9 +99,9°F	

] <i>P</i> .	Select resolution	
0.0	0 °C/°F 0.0 °C/°F (not with TC.B, R, S)	
all		
FILTER	Select Input Filter	
	The Filter function shows how many measurement cycles are used to determine the moving average.	
1	Input range 1 99 [cycles] - with a value of 1 the filter function is switched off	
PW.DELY.	Select Start Delay after Power On (limit monitoring is processed only after the programmed time has expired)	
0.0	Input range 0.0 99.9 [sec]	
PHFRED	Select local mains frequency	
50HZ	Mains frequency 50 Hz	
6ØHZ	Mains frequency 60 Hz	

The functions LO.LIM and HI.LIM limit the editable range.

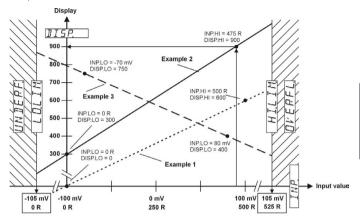
The value for HI.LIM must always be greater than the value for LO.LIM.

(±100 ma / 500 sz)	
LINEAR	Menu User Linearisation
LINEAR.	Select User Linearisation
ND	Linearisation OFF
Y E 5	Linearisation ON
NUMPNT.	Select number of linearisation (control) points
Э	Input range 3 12
INPLO.	Select input low value
- 100.00	Input range depends on measuring range [Ω / mV]
]] I S P.L O.	Select display low value for INP.LO.
- 100.00	Input range -1999999 +9999999 and DP
INP.01	Select input value 1
0.0 0	Input range depends on measuring range [Ω / mV]
]][5 <i>P.Ø_I</i>	Select display value for INP.01.
0.00	Input range -1999999 +9999999 and DP

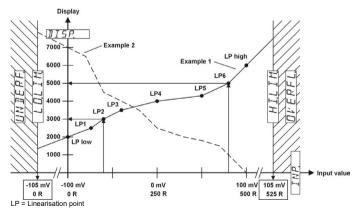
9.3 User Linearisation (±100 mV / 500 Ω)

A maximum of 12 linearisation points is possible. An input value INP must be entered for each linearisation point (LP) - input of the sensor value from the analogue input in physical units - as well as the corresponding display value DISP for this sensor value. The linearisation points (LP) may be entered in any order. They are then sorted in the firmware in ascending order for the linearisation function. Linearisation based on a negative slope is possible.

INP.10	Select input value 10
0.00	Input range depends on measuring range [Ω / mV]
]]5P.10	Select display value for INP.10.
0.00	Input range -1999999 +9999999 and DP
INP.HI.	Select input high value
100.00	Input range depends on measuring range [Ω / mV]
]] I S P.H I.	Select display high value for INP.HI.
100.00	Input range -199999 +999999 and DP



The functions LO.LIM and HI.LIM limit the editable range.


The value for HI.LIM must always be greater than the value for LO.LIM.

Example for linear scaling

Example 1: $0 \dots 500 \ \Omega = 0 \dots 600$ Example 2: $0 \dots 475 \ \Omega = 300 \dots 900$ Example 3: -70 \dots +80 mV = 750 \dots 400

Example for non-linear scaling

9.4 Function Multifunction Key (MP-Key) and Multifunction inputs (MP-INP)

Reset MIN value memory

- In the function group MP.KEY, programme the function RES.MIN to ON. In the operating mode select the minimum value memory (MINIMU) and briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to RES.MIN or R.PEAKS. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Reset MAX value memory

- In the function group MP.KEY, programme the function RES.MAX to ON. In the operating mode select the maximum value memory (MAXIMU) and briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to RES.MAX or R.PEAKS. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Reset of relay outputs in Latch mode

- In the function group MP.KEY, programme the function RES.REL to ON. In the operating mode briefly press the MP Key.
- In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to RES.REL. In the operating mode briefly activate the multifunction input 1 or multifunction input 2.

Display Hold

 In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to DISP.HD. In the operating mode, select either the current measured value (ACTUAL) or the totaliser (TOTAL) and activate multifunction input 1 or multifunction input 2.

Lock-out Limit Value (Alarm) setting

 In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to LOC.ALR. In the operating mode, activate multifunction input 1 or multifunction input 2.

Lock-out Programming and Default setting

 In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to LOC.PRG. In the operating mode, activate multifunction input 1 or multifunction input 2.

Lock-out Keypad

 In the function group MP.INP, programme the function MP.INP1 or MP.INP2 to LOC.KEY. In the operating mode, activate multifunction input 1 or multifunction input 2.

9.4.1 Multifunction Key

<u> </u>	Menu Function MP-Key	
<u>RESMIN</u>	Select function: Reset MIN value with MP-Key – only when MIN value appears in the display	
OFF ON	OFF ON	
<u>RESMRX</u>	Select function: Reset MAX with MP-Key – only when MAX value appears in the display	
OFF ON	OFF ON	
<u>RESREL</u>	Select function Output-Latch Reset with MP-Key - only if output is in memory mode (ALARMx = LATCH)	
OFF 0N	OFF ON - this setting is possible only if all other settings are set to OFF	

9.4.2 Multifunction Inputs

-			
MP.INP.	Menu Function MP-Inputs		
MP.INP.I	Select function MP-Input 1		
NOFUNE	No function		
RESMIN	Reset MIN value		
RESMA×.	Reset MAX value		
R.PEAKS	Reset MIN and MAX values		
RE <u>5</u> .REL.	Reset Output-Latch - only if output is in memory mode (ALARMx = LATCH)		
JISPHJ	Hold ('freeze') display		
LOCALR	Lock-out limit value setting		
L 0 C.P R G.	Lock-out programming and default setting		
L	Lock-out limit value setting, programming, default setting and MP-Key		
MP.INP.2	Select function MP-Input 2		
N D.F U N C.	No function		
RESMIN	Reset MIN value		
RE5.MA×.	Reset MAX value		
R.PEAKS	Reset MIN and MAX values		
RE <u>5</u> .REL.	Reset Output-Latch - only if output is in memory mode (ALARMx = LATCH)		
]ISP.H]	Hold ('freeze') display		
LOCALR	Lock-out limit value setting		
LOC.PRG.	Lock-out programming and default setting		

Lock-out limit value setting, programming, default setting and MP-Key

L Ο Γ.Κ ΕΥ

9.5 Limit Value (Alarm) Monitoring

ALARMI	Menu Alarm Output 1		
AL.OUT I	Select operating mode		
OFF	OFF		
AUTO	Automatic operation		
LATEH	Memory latch operation - not with band limitation		
MDOUTI	Select Output triggering		
INER	With incrementing measuring signal		
DEER	With decrementing measuring signal		
] AN]	Band limitation		
FMOUTI	Select Alarm status		
/	With alarm: output active		
7	With alarm: output inactive		
0 N.H Y S. I	Select on-hysteresis		
0.00	Input range 0 +9999 and DP		
0F.H Y 5. 1	Select off-hysteresis - only with auto operation		
0.00	Input range 0 +9999 and DP		
ON. DLY. 1	Select on-delay		
0.0	Input range 0.0 99.9 [sec]		
OF. DL Y. I	Select off-delay - only with auto operation		
0.0	Input range 0.0 99.9 [sec]		

ALARM2	Menu Alarm Output 2
RL.OUT2	Select operating mode
OFF	OFF
RUTO	Automatic operation
LAICH	Memory latch operation
N I.OUT 2	Select Output triggering
INER	With incrementing measuring signal
]E[R	With decrementing measuring signal
] AN]	Band limitation
FM.OUT2	Select Alarm status
/	With alarm: output active
7	With alarm: output inactive

<u>0 N.H Y S.</u> 2	Select on-hysteresis
0.00	Input range 0 +9999 and DP
0F.H ¥ 5.2	Select off-hysteresis - only with auto operation
0.00	Input range 0 +9999 and DP
DNJL Y.2	Select on-delay
0.0	Input range 0.0 99.9 [sec]
0F.]L Y.2	Select off-delay - only with auto operation
0.0	Input range 0.0 99.9 [sec]

INER

ON switching point = limit value + ON hysteresis OFF switching point = limit value – OFF hysteresis

JEER

ON switching point = limit value – ON hysteresis OFF switching point = limit value + OFF hysteresis

]AN]

An alarm is triggered, if the measured value falls outside a defined range (Band). Upper switching point = limit value + ON hysteresis Lower switching point = limit value – OFF hysteresis

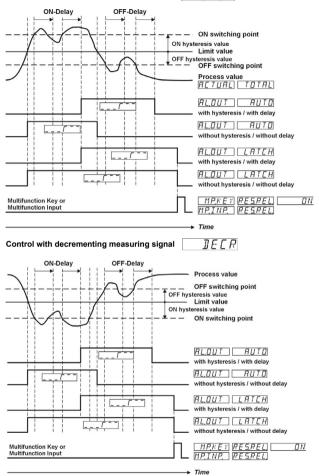
_ _ _ [] _

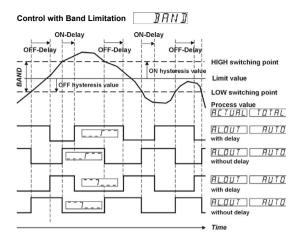
An alarm causes the output to become active (Relay energised, LED ON)

--7_-

An alarm causes the output to become inactive (Relay not energised, LED OFF)

PHJELY. LATEH


In memory latch operation the status of the outputs is stored in the event of a Power OFF condition and then immediately restored at the next Power ON.


PHJELY. RUTO

In automatic (auto) operation the status of the outputs is not saved in the event of a Power OFF condition. At the next Power ON the limit values are not processed until after the expiration of the start delay (PW.DELY).

10 Monitoring of Measuring Circuit

Meas. range	Lower Display Range limit	Upper Display Range limit	Lower Meas. Range limit	Upper Meas. Range limit <u>H I L I M</u>	Probe or wire short-circuit Probe or wire break
TC	-	-	■ 3)	■ 3)	■ 1)
PT100	-	-	■ 3)	■ 3)	-
±100 mV		•	•	-	■ 1)
500 Ω					■ 2)
Indication	- <u> 99999</u> blinking	<u>9999999</u> blinking	UNJERF. blinking	DVERFL. blinking	SENSOR blinking

(= = is detected)

1) only probe or wire break

2) no probe or wire short-circuit with 2-wire sensors

3) with thermocouples and Pt100 the measuring range limits are fixed in advance

11 Technical Data

11.1 General Data

Display:	6-digit, 14 segment LED
Digit height:	14 mm
Data retention:	> 10 years, EEPROM
Operation:	5 keys

11.2 Measuring signal inputs

Sampling rate:	10 readings/sec.
SELV circuits,	reinforced / double insulation

Input Thermocouple

Sensor		Range	Accuracy @ 23°C
Fe-CuNi	J	-210.0 +1200.0°C	typ. 0.2°C max. 0.5°C
NiCr-Ni	к	-200.0 +499.9°C	typ. 0.6°C max. 1.0°C
	ĸ	-500.0 +1372.0°C	typ. 0.3°C max. 0.5°C
Cu-CuNi	т	-200.0 +400.0°C	typ. 0.2°C max. 0.5°C
NiCr-CuNi	Е	-200.0 +1000.0°C	typ. 0.2°C max. 0.5°C
NiCrSi-NiSi	Ν	-200.0 +1300.0°C	typ. 0.3°C max. 0.7°C
Pt10Rh-Pt	s	-50 +1768°C	typ. 1.0°C max. 2.0°C
Pt13Rh-Pt	R	-50 +1768°C	typ. 1.0°C max. 2.0°C
Pt30Rh-Pt6Rh	В	+250 +1820°C	typ. 1.0°C max. 2.0°C

Resolution J, K, T, E, N: Resolution S, R, B: Temperature drift: Reference point: (cold junction) Reference point accuracy: 1 or 0.1°C/°F 1 °C/°F < 100 ppm/K internal or external constant $\leq \pm 1^{\circ}C$

Input mV

Measuring range: Resolution: Measuring accuracy @ 23°C: Temperature drift: Input resistance:

± 105 mV ± 15 Bit typ. 0.02 % of range max ≤0.05% of range < 100 ppm/K > 2 MΩ

Input Pt100

Measuring range: Resolution: Measuring accuracy @ 23°C: Temperature drift: Measuring current: Connection: -200 ... +850°C 1 or 0.1°C/°F typ. 0.3°C max. ≤0.6°C < 100 ppm/K 200 μA 2-, 3-, 4-wire Lead wire resistance:

max. 25 Ω per wire

Input 500 Ω

Measuring range: Resolution:	0 525 Ω 15 Bit
Measuring accuracy @ 23°C:	
	max. ≤0.2 Ω
Temperature drift:	< 100 ppm/K
Measuring current:	200 µA
Connection:	2-, 3-, 4-wire
Lead wire resistance:	max. 25 Ω per wire

11.3 Control Inputs MPI 1 / MPI 2

SELV circuits, reinforced / double insulation		
Quantity:	2, optocouplers	
Function:	programmable	
Switching levels:	Low: < 2 V	
	High: > 4 V (max. 30 V)	
Pulse length:	> 100 ms	

11.4 Alarm outputs

Relays: Prescribed fuse:	changeover contacts
	max. 250 V AC / 125 V DC
Switching voltage:	min. 5 V AC / 5 V DC
Switching current:	max. 5 A AC / A DC
0	min. 10 mA DC
Switching capacity:	max. 1250 VA / 150 W
Pull-in time:	approx. 10 ms

 Λ

The maximum values shall in no case be exceeded!

11.5 Supply voltage

100 240 V AC / max. 9 VA
50 / 60 Hz, Tolerance \pm 10%
ext. fuse protection: T 0.1 A
10 30 V DC / max. 3.5 W
with galvanic isolation and,
reverse polarity protection
SELV, CLASS II (Limited
Power Source)
ext. fuse protection: T 0.4 A
50 Hz or 60 Hz
programmable

11.6 Sensor Supply Voltage

11.7 Climatic Conditions

Operating temperature:	-20°C +65°C
Storage temperature:	-25°C +75°C
Relative humidity:	R.H. 93 % at +40°C,
	non-condensing
Altitude:	up to 2000 m

11.8 EMC

Noise immunity:	EN 61000-6-2
	with shielded signal and
	control cables
Noise emission:	EN 55011 Class B

11.9 Device Safety

Design to: EN 61010 Part 1 Protection Class: Protection Class 2 (front side)

Â	Only the front side is classified as accessible for the operator.

Application area:

Insulation:

4

ea:	Pollution level 2
	over-voltage Category II
	Front: double insulation,
	Rear side: basic insulation,
and und a	oncor nowor cupply: SELV

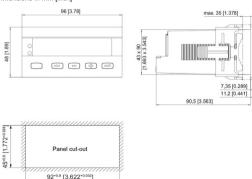
Signal inputs and und sensor power supply: SELV

11.10 Mechanical Data

Housing:	Panel mount housing
Dimensions:	to DIN 43 700, RAL 7021
Panel cut-out:	96 x48 x102 mm
Installation depth:	92 ^{r0.8} x45 ^{r0.6} mm
Weight:	approx. 80 g
Protection:	IP65 (front, device only)
Housing material:	Polycarbonate UL94 V-2
Vibration resistance:	10 - 55 Hz / 1 mm / XYZ
EN 60068-2-6	30 min in each direction
EN 60068-2-27 EN 60068-2-29	100G / XYZ 3 times in each direction 10G / 6 ms / XYZ 2000 times in each direction

11.11 Connections

Supply voltage and outputs:


Plug-in screw terminal, 8-pin, RM5.00 Core cross-section, max. 2.5 mm²

Signal and control inputs:

Plug-in screw terminal, 9-pin, RM 3.50 Core cross section, max. 1.5 mm²

12 Dimensional Drawings

Dimensions in mm [inch]

13 Help Texts

PROG.	NO	NO PROGRAMMING
PROG.	YES	START PROGRAMMING
HLP.TXT.		MAIN MENU SELECT HELPTEXT
HLP.TXT.	ON	HELPTEXTS ON
HLP.TXT	OFF	HELPTEXTS OFF
SL.LANG.	DE	SPRACHE DEUTSCH
SL.LANG.	EN	LANGUAGE ENGLISH
INPUT.		MAIN MENU SIGNAL INPUT
RANGE	TC.J	THERMOCOUPLE J
RANGE	TC.K	THERMOCOUPLE K
RANGE	TC.N	THERMOCOUPLE N
RANGE	TC.B	THERMOCOUPLE B
RANGE	TC.R	THERMOCOUPLE R
RANGE	TC.S	THERMOCOUPLE S
RANGE	TC.E	THERMOCOUPLE E
RANGE	TC.T	THERMOCOUPLE T
RANGE	PT100	RESISTANCE THERMOMETER PT100
RANGE	0.500R	RESISTANCE INPUT RANGE 0-500 OHM
RANGE	100MV	VOLTAGE INPUT RANGE -100MV/+100MV
LO.LIM.		LOWER INPUT RANGE LIMIT
HI.LIM.		UPPER INPUT RANGE LIMIT
UNIT	°C	TEMPERATURE IN °C
UNIT	°F	TEMPERATURE IN °F
METH	2.WIRE	2-WIRE CONNECTION
METH	3.WIRE	3-WIRE CONNECTION
METH	4.WIRE	4-WIRE CONNECTION
R.WIRE		LINE RESISTANCE IN OHM
REF.JUN	INTERN	COLD JUNCTION COMPENSATION INTERN
REF.JUN	EXTERN	COLD JUNCTION COMPENSATION EXTERN
JUN.TMP		EXTERNAL COLD JUNCTION TEMPERATURE
ADJUST		CORRECTION VALUE
DP.	0	NO DECIMAL POINT
DP.	0.0	DECIMAL POINT 0.0
DP.	0.00	DECIMAL POINT 0.00
DP.	0.000	DECIMAL POINT 0.000
DP.	0.0000	DECIMAL POINT 0.0000
DP.	0.00000	DECIMAL POINT 0.00000
INP.LO.		INPUT START VALUE
DISP.LO.		DISPLAY START VALUE
INP.HI.		INPUT END VALUE
DISP.HI.		DISPLAY END VALUE
FILTER		INPUT FILTER
PW.DELY.		POWER-ON DELAY FOR OUTPUTS [SEC]
PW.FREQ.	50HZ	POWER LINE FREQUENCY 50HZ
PW.FREQ.	60HZ	POWER LINE FREQUENCY 60HZ
LINEAR.		MAIN MENU LINEARIZATION
LINEAR.	NO	LINEARIZATION OFF
LINEAR.	YES	LINEARIZATION ON
NUM.PNT.		NUMBER OF LINEARIZATION POINTS

INP.01		INPUT VALUE NO.1
DISP.01		DISPLAY VALUE NO.1
to		
INP.10		INPUT VALUE NO.10
DISP.10		DISPLAY VALUE NO.10
MP.KEY		MAIN MENU MP-BUTTON
RES.MIN.	OFF	FUNCTION RESET MIN VALUE OFF
RES.MIN.	ON	FUNCTION RESET MAX VALUE ON
RES.MAX.	OFF	FUNCTION RESET MIN VALUE OFF
RES.MAX.	ON	FUNCTION RESET MAX VALUE ON
RES.REL.	OFF	FUNCTION RESET OUTPUT-LATCH OFF
RES.REL.	ON	FUNCTION RESET OUTPUT-LATCH ON
MP.INP.	0.1	MAIN MENU MP-INPUTS
MP.INP.1	NO.FUNC.	NO FUNCTION
MP.INP.1	RES.MIN.	FUNCTION RESET MIN VALUE
MP.INP.x	RES.MAX.	FUNCTION RESET MAX VALUE
MP.INP.x	R.PEAKS	FUNCTION RESET MIN/MAX VALUE
MP.INP.x	RES.REL.	FUNCTION RESET OUTPUT-LATCH
MP.INP.x	DISP.HD.	FUNCTION DISPLAY HOLD
MP.INP.x	LOC.ALR.	FUNCTION LOCK EDITING ALARM VALUE
MP.INP.x	LOC.PRG.	FUNCTION LOCK PROGRAMMING
MP.INP.x	LOC.KEY	FUNCTION LOCK KEYS
ALARMx		MAIN MENU ALARM x
AL.OUTx	OFF	ALARM x OFF
AL.OUTx	AUTO	AUTOMATIC MODE OF ALARM OUTPUT x
AL.OUTx	LATCH	LATCH MODE OF ALARM OUTPUT x
MD.OUTx	INCR	ALARM x ACTIVE AT INCREASING INPUT SIGNAL
MD.OUTx	DECR	ALARM x ACTIVE AT DECREASING INPUT SIGNAL
MD.OUTx	BAND	ALARM x BAND LIMITATION
FM.OUTx	/	OUTPUT ACTIVE AT ALARM
FM.OUTx	7	OUTPUT INACTIVE AT ALARM
ON.HYS.x		SWITCH ON HYSTERESIS ALARM x
OF.HYS.x		SWITCH OFF HYSTERESIS ALARM x
ON.DLY.x		ON DELAY ALARM x [SEC]
OF.DLY.x		OFF DELAY ALARM x [SEC]
END.PRG.	NO	REPEAT PROGRAMMING
END.PRG.	YES	EXIT PROGRAMMING AND STORE DATAS
-1.9.9.9.9.9		DISPLAY RANGE UNDERFLOW
9.9.9.9.9.9.		DISPLAY RANGE OVERFLOW
OVERFL.		OVERFLOW UPPER INPUT RANGE LIMIT
UNDERF.		UNDERFLOW LOWER INPUT RANGE LIMIT
SENSOR		SENSOR ERROR

Kübler Group Fritz Kübler GmbH

Schubertstrasse 47 D-78054 Villingen-Schwenningen Germany Tel: +49 7720 3903-0 Fax +49 7720 21564 info@kuebler.com www.kuebler.com