

MID energy meters Product manual

Version 2.5

Janitza

MID energy meters Contents

Contents
1General3
1.1 Use of the product manual
1.1.1 Notes 4
1.2 Product and function overview 5

2

Device technology

7

2.1
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.4
2.4.1
2.4.2
2.4.3
2.5

3

3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2 .5
3.2 .6
3.2.7
3.2 .8
3.2.9
3.2.10
3.2.11
3.2.12
3.2.13
3.3
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

General B23/B24 ... 7
Component, operating and display elements ... 8
Product label... 9

B24 connection diagrams... 11
Scale picture ... 12
General B21.. 13
Component, operating and display elements .. 14
Product label.. 15
Connection diagram.. 16
Scale picture .. 17
Technical data B21, B23, B24... 18
Interface connection diagrams ... 20
Inputs/outputs .. 20
RS-485 (Modbus RTU) .. 20
M-Bus.. 20
Display and indications ... 21

Commissioning
25
Mounting and installation ... 25
Settings .. 27
Setting the transformer ratio... 28
Setting measuring units.. 30
Setting the pulse output ... 31
Setting output 2... 34
Setting alarm for output 2.. 35
Setting the M-Bus .. 39
Modbus settings .. 41
Infra-red interface (only for internal use) ... 43
Protocol details ... 45

Setting the pulse LED .. 47
Tariff settings (2 tariffs available) .. 48
Resetting intermediate meters (not available with B21, B23 and B24)................................... 49
Technical description ... 51
Energy values .. 51
Measured values.. 52
Alarms ... 53
Inputs and outputs .. 54
Tariff inputs .. 54
Pulse outputs ... 55
Protocol storage logs ... 56
4.1 Modbus protocol ... 63
4.1.1

Function code 3 (reading the holding register)64
4.1.2 Function code 16 (writing multiple registers) 65
4.1.3

MID energy meters Contents

4.1.4
4.2
Exception responses67

Mapping tables - standard register compatible with UMG devices

Mapping tables - special register

5

Communication with M-Bus77

Protocol description
Telegram format87Field codes for value information87
5.1.2.2

Standard VIF codes935.1.2.3Standard codes for VIFE with connection indicator F Dh945.1.2.4Standard codes for VIFE94
First manufacturer-specific VIFE codes5.12 .595
VIFE codes for error messages (meter to master) 975.1.2.6
5.1.2.7
5.12 .8
2nd manufacturer-specific VIFE after VIFE 11111000 (F8 hex) 97VIFE codes for object actions (master to meter)972nd manufacturer-specific VIFE after VIFE 11111001 (F9 hex)97
5.1.3Communication process.98
5.1.3.1 Selection and secondary addressing 99
5.2Standard readout of meter data ..100
Example for telegrams 1 to 4 with B21 (all values are hexadecimal) 100
5.2 .2 Example for telegrams 1 to 6 with B23 (all values are hexadecimal) 111
5.2 .3 Example for telegrams 1 to 6 with B24 (all values are hexadecimal) 132
5.3
Sending data to the meters 154
5.3.1Tariff setting155
5.3.2 Setting the primary address 155
5.3.3 Changing the Baud rate 156
5.3.4 Resetting the power failure meter 156
5.3.5 Setting the current transformer conversion ratio (CT) - meter 157
5.3.6 Setting the current transformer conversion ratio (CT) - denominator 157
5.3.7 Selecting status information 158
5.3.8 Resetting the stored status for input 1. 158
5.3.9 Resetting the stored status for input 2 159
5.3.10 Resetting the input meter 1 160
5.3.11 Resetting the input meter 2 160
5.3.12 Setting output 1 161
5.3.13 Setting output 2 162
5.3.14 Resetting power failure time duration 163
5.3.15 Sending a password 163
5.3.16 Setting up a password 164
5.3.17 Resetting logs 164
5.3.18 Setting the level of write access 165
5.3.19 166
A Annex 169
A. 1 Order information 169

MID energy meters Contents

MID energy meters
 General

1
 General

Climate change and increasingly scarce resources are major challenges of our time. Efficient and sustainable use of energy is therefore essential. Only when armed with the knowledge of how much energy is consumed is it possible to implement expedient optimisation measures.

With the MID energy meters, J anitza offers comprehensive possibilities for logging energy data and passing this on to systems for evaluation or control.

1.1 Use of the product manual

This manual provides you with detailed technical information regarding the function, mounting and programming of the power supply. Application is explained on the basis of examples.
The manual is divided up into the following chapters:
Chapter 1 General
Chapter 2 Device technology
Chapter 3 Commissioning
Chapter 4 Communication with Modbus
Chapter 5 Communication with M-Bus
Chapter A Annex

MID energy meters General

1.1.1

Notes
Notes and safety information are presented in this manual as follows:

Note

Operating assistance, operating tips

Examples

Example applications, example installations, programming examples

```
Important
This safety information is used as soon as danger of a malfunction exists, without a risk of damage or injury.
```


Attention

This safety information is used as soon as danger of a malfunction exists, without a risk of damage or injury.

\triangle Danger

This safety information is used as soon as danger to life and limb exists due to incorrect handling.

4. 4 Danger

This safety information is used as soon as an acute risk of death exists due to incorrect handling.

MID energy meters
 General

1.2 Product and function overview

The energy meters from J anitza are available in a range of different variants: Meters for single or three-phase measurement and meters for direct transformer connection.

Type	Single-phase energy meter B21	Three-phase energy meter	
		B23	B24
Connection type	Direct	Direct	Transformer
Limit current $I_{\text {max }}$	65 A	65 A	6 A
Connections/measuring units (configurable *)			
2-conductor connection/1 measuring unit	X		
3 -conductor connection/2 measuring units*		X	X
4-conductor connection/3 measuring units*		X	X
Precision classes			
B (class 1)	X	X	X
C (class 0.5 S)			
Energy values/meter readings			
Active energy	X	X	X
Reactive energy	X	X	X
Apparent energy	X	X	X
4-quadrant measurement	X	X	X
Tariff register, 1-2	X	X	X
Diagnostics and alarms			
Measured values (e.g. W, V, A, Hz, Pf)	X	X	X
Alarm function (output 2)	X	X	X
Inputs/outputs			
Pulse output	X	X	X
1 input/2 outputs	X	X	X
Tariff control			
via inputs	X	X	X
via communication	X	X	X
Approvals			
MID (module B + D)	X	X	X
IEC	X	X	X
Communication/interfaces			
M-Bus	Optional	Optional	Optional
RS-485 (Modbus RTU)	Optional	Optional	Optional

MID energy meters General

MID energy meters Device technology

Device technology

2.1

General B23/B24

B23 three-phase meter, three-phase (3+N)
Direct connection up to 65 A
W ith measured values and alarm function
For 3-conductor and 4-conductor connection
Optional interfaces: M-Bus, RS-485 (Modbus RTU)
Width: 4 DIN modules
.Tested and approved per MID and IEC

B24 meas urement transformer meter, three-phase ($\mathbf{3 + N}$)
Transformer connection CT, 1(6) A
W ith measured values and alarm function
For 3-conductor and 4-conductor connection
Optional interfaces: M-Bus, RS-485 (Modbus RTU)
Width: 4 DIN modules
Tested and approved per MID and IEC

MID energy meters Device technology

2.1.1 Component, operating and display elements

No.	Description	Function
$\mathbf{1}$	Sealing eyelets	For sealing the connection terminals
$\mathbf{2}$	C onnection terminals	Electrical connections
$\mathbf{3}$	LED	Flashes proportionally to the measured energy
$\mathbf{4}$	Product data/label	Contains information about the meter
$\mathbf{5}$	Sealing eyelets	For sealing the front flap
$\mathbf{6}$	SET button	For calling up the configuration mode
$\mathbf{7}$	LC display	For displaying the energy and measured values
$\mathbf{8}$	OK button	For confirming the selection and menu entries. Short button press: Confirm selection Long button press: Back to previous menu or change between standard and main menu
$\mathbf{9}$	UP/Dow N button	For selecting a menu entry Shorter button press: Down or forwards Long button press: Up or back
$\mathbf{1 0}$	Plug-in terminal for communication interfaces	Depending on meter type RS-485 (Modbus RTU) or M-Bus
$\mathbf{1 1}$	Plug-in terminal for inputs and outputs	Only for internal use!
$\mathbf{1 2}$	Optical infra-red interface (IR)	On both sides of the meter for protection against unauthorised opening of the meter
$\mathbf{1 3}$	Device seal	Protective cover for printed connection diagram on the inside
$\mathbf{1 4}$	Cover can be lead-sealed	

MID energy meters

Device technology

2.1.2 Product label

1 4-quadrant meter
23 measuring units (4-conductor connection)
32 measuring units (3-conductor connection)
41 measuring unit (2-conductor connection)
5 LED
6 Pulse output
7 Protection class II
8 CE test mark
9 Type designation
10 Serial number
11 Active energy accuracy class

19 Date of manufacture (year and week)
20 J anitza ID
21 Notified body (NMi)
22 MID test mark and test year

MID energy meters Device technology

2.1.3 B 23 connection diagrams

3-conductor connection / 2 measuring units

2-conductor connection / 1 measuring unit

MID energy meters Device technology

2.1.4 B24 connection diagrams

4-conductor connection / 3 measuring units

3-conductor connection / 2 measuring units

2-conductor connection / 1 measuring unit

MID energy meters Device technology

2.1.5 Scale picture

MID energy meters Device technology

2.2 General B21

AC meter, single phase ($\mathbf{1}+\mathbf{N}$)
Direct connection up to 65 A
With measured values and alarm function
Optional interfaces: M-Bus, RS-485 (Modbus RTU)
Width: 2 DIN modules.
Tested and approved per MID and IEC

MID energy meters

Device technology

2.2.1 Component, operating and display elements

No.	Description	Function
$\mathbf{1}$	Connection terminals	Electrical connections
$\mathbf{2}$	Sealing eyelets	For sealing the connection terminals
$\mathbf{3}$	LED	Flashes proportionally to the measured energy
$\mathbf{4}$	Product data/label	Contains information about the meter
$\mathbf{5}$	SET button SET	For calling up the configuration mode
$\mathbf{7}$	UP/DOW N button	For confirming the selection and menu entries. Short button press: Confirm selection Long button press: Back to previous menu or change between standard and main menu
$\mathbf{8}$	Cover can be lead-sealed	For selecting a menu entry Shorter button press: Down or forwards Long button press: Up or back
$\mathbf{9}$	Plug-in terminal for communication interfaces	Protective cover for printed connection diagram on the inside
$\mathbf{1 0}$	Plug-in terminal for inputs and outputs	RTU or M-Bus

MID energy meters

Device technology

2.2.2 Product label

1 4-quadrant meter
21 measuring unit (2-conductor connection)
3 LED
4 Pulse output
5 Protection class II
6 CE test mark
7 Type designation
8 Serial number
9 Active energy accuracy class
10 Reactive energy accuracy class

11 Voltage
12 Current strength
13 Frequency
14 LED pulse frequency
15 Pulse frequency
16 Temperature range
17 Date of manufacture (year and week)
18 J aniza ID
19 Notified body (NMi)
20 MID test mark and test year

MID energy meters Device technology

2.2.3 Connection diagram

2-conductor connection / 1 measuring unit

MID energy meters

Device technology

2.2.4 Scale picture

MID energy meters Device technology

2.3 Technical data B21, B 23, B 24

	B21	B23	B24
Voltage/current input			
R ated voltage	230 V AC	$3 \times 230 / 400 \mathrm{~V} \mathrm{AC}$	
Voltage range	220... 240 V AC (-20... +15 \%)	$3 \times 220 \ldots 240$ V AC ($-20 \ldots+15 \%)$	
Power dissipation, voltage circuits	1.0 VA (0.4 W) total	$1.6 \mathrm{VA}(0.7 \mathrm{~W})$ total	
Power dissipation, current circuits	$\begin{aligned} & 0.007 \mathrm{VA}(0.007 \mathrm{~W}) \text { at } 230 \mathrm{~V} \mathrm{AC} \\ & \text { and } \mathrm{Ib} \end{aligned}$	0.007 VA (0.007 W) per phase at 230 V AC and Ib	
Basic current l_{b}	5 A		
Rated current In	-	-	1 A
Reference current $I_{\text {ref }}$	5 A		1 A
Transition current $\mathrm{Itr}_{\text {t }}$	0.5 A		0.05 A
Max. current $I_{\text {max }}$	65 A		6 A
Min. current $I_{\text {min }}$	0.25 A		0.02 A
Start-up current $\mathrm{I}_{\text {st }}$	$<20 \mathrm{~mA}$		$<1 \mathrm{~mA}$
Connection cross-section	$1 . . .25 \mathrm{~mm}^{2}$		$0.5 \ldots 10 \mathrm{~mm}_{2}$
Recommended tightening torque	3 Nm		1.5 Nm
Communication			
Connection cross-section	$0.5 \ldots 1 \mathrm{~mm}^{2}$		
Recommended tightening torque	0.25 Nm		
Transformer ratio			
Configurable current transformer ratio (CT)			1/9... 9,999/1
Pulse display (LED)			
Pulse frequency	1,000 pulse/kWh		5,000 pulse/k
Pulse length	40 ms		
General information			
Frequency	50 or $60 \mathrm{~Hz} \pm 5 \%$		
Precision class	B (cl. 1) and reactive power cl. 2		B (cl. 1) or C power cl. 2
Active energy	1 \%		1 \%
Energy display	LCD with 6 digits	LCD	
Environmental conditions			
Operating temperature	$-40^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$		
Storage temperature	$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$		
Humidity	75 \% annual average, 95% on 30 days/year		
Fire and heat resistance	Terminal $960{ }^{\circ} \mathrm{C}$, covering $650{ }^{\circ} \mathrm{C}$ (IEC $60695-2-1$)		
Water and dust resistance	IP 20 on terminal strip without protective housing and IP51 in protective housing, per IEC 60529		
Mechanical environment	Class M1 per Measuring Instrument Directive (MID) (2004/22/EC)		
Electromagnetic environment	Class E2 per Measuring Instrument Directive (MID) (2004/22/EC)		

MID energy meters Device technology

	B21	B23	B24
Outputs			
Current	2... 100 mA		
Voltage	24 V AC.. 240 V AC, 24 V DC... 240 V DC.		
Output pulse frequency	Prog. 1...999,999 pulse/kW h		
Pulse length	$10 . . .990 \mathrm{~ms}$		
Connection cross-section	$0.5 \ldots 1 \mathrm{~mm}^{2}$		
Recommended tightening torque	0.25 Nm		
Inputs			
Voltage	$0 \ldots 240 \mathrm{~V} \mathrm{AC/DC}$		
OFF	$0 \ldots 12$ A AC/DC		
ON	$57 . .240 \mathrm{~V}$ AC/24... 240 V DC		
Min. pulse length	30 ms		
Connection cross-section	$0.5 \ldots 1 \mathrm{~mm}^{2}$		
Recommended tightening torque	0.25 Nm		
Electromagnetic compatibility			
Surge voltage testing	$6 \mathrm{kV} \mathrm{1.2/50} \mathrm{\mu s}$ (IEC 60 060-1)		
Voltage swell testing	$4 \mathrm{kV} \mathrm{1.2/50} \mu \mathrm{~s}$ (IEC 61 000-4-5)		
R apid transient burst test	4 kV (IEC 61 000-4-4)		
Immunity from interference from electromagnetic HF fields	80 MHz .. 2 GHz (IEC 61 000-4-6)		
Immunity from interference from conducted interference	$150 \mathrm{kHz} . . .80 \mathrm{MHz}$ (IEC 61 000-4-6)		
Immunity from interference with harmonics	$2 \mathrm{kHz} . . .150 \mathrm{kHz}$		
High frequency emissions	EN 55022 , class B (CISPR22)		
Electrostatic discharge	15 kV (IEC 61 000-4-2)		
Standards			
	```IEC }62\mathrm{ 052-11, IEC }62053-21 class 1 & 2, IEC 62 053-22 class 0.5 S, IEC 62 053-23 class 2, IEC 62 054-21, GB/T 17 215.211-2006, GB/T 17 215.312-2008 class 1& 2, GB/T 17 215.322-2008 class 0.5 S, GB 4208-2008, EN 50 470-1, EN 50 470-3 category A, B & C```		
Material, dimensions and weights			
Material	Transparent front panel: Polycarbonate Housing: Fibre glass-reinforced polycarbonate Terminal cover: Polycarbonate		
W idth	35 mm	70 mm	
Height	97 mm		
Depth	65 mm		
W idth in pitch units (TE)	2	4	
W eight	approx. 0.15 kg	approx. 0.4 kg	approx

## MID energy meters Device technology

### 2.4 Interface connection diagrams

### 2.4.1 Inputs/outputs

- Inputs/2 outputs
- Connection via plug-in terminal provided

Example 1


Example 2


If a pulse output and tariff conversion are required, example 1 cannot be used.

### 2.4.2 RS-485 (Modbus RTU)


2.4.3 M-Bus


## MID energy meters Device technology

### 2.5 Display and indications

This chapter contains a description of the various displays and the display menu structure.

## General

The display contains two views:

- Standard view
- Main menu

Use the $[4]$ button (button press $>1$ second) to change between the views. In both views, status symbols appear in the top part of the display.


## Energy values

If you are in the standard view and you press the button, the individual energy values (depending on the meter type) are displayed for consumed or supplied active energy, reactive energy and apparent energy per phase or per tariff.

## MID energy meters Device technology

## Standard view



Symbol	Meaning
$\leftrightarrows$	Communication active   The meter sends or receives information.
(2)	Measurement runs
$1 \rightarrow 1+1 \quad 2 \rightarrow 2+2 \quad 3 \rightarrow 3+3$	Arrows indicate the current direction per phase   Arrow left = export   Arrow right = consumption   Number without arrow $=$ Only voltage is connected to the phase
T1 T2	Active tariff
$\triangle 1$	Error, warning, note
8	Transformer measurement (only for measurement transformer meter B24)

## MID energy meters

 Device technology
## Main menu

Use the button (button press > 1 second) to change to the main menu.
The following selection options are available in the main menu:

Indication in the display	Meaning	
i nStRnt	InStant:	Instruments or measured values
reg	rEG:	Energy register
1 n-0ut	I_0:	Inputs and outputs
5tRtu5	StAtUS:	Status messages
5Et	SEt:	Settings
ESc	ESc:	Return to main menu

## MID energy meters Device technology

rES	1 n 5 t	1.0	5tREU5	5Et
Active energy (consumption) L1-L3	Active power	1 OUt Output 1*	FL 995   System log	CL rat   Transformer ratio
Active energy (supply)   L1-L3	Reactive power	こ OUL Output 2	$\begin{aligned} & E_{\mathrm{u}}-\log \\ & \text { Event } \log \end{aligned}$	$\begin{aligned} & \text { r5-485 } \\ & \text { RS } 485 \end{aligned}$
Total active energy L1-L3	Apparent power	$\begin{aligned} & \exists \mathrm{I} \\ & \text { Input } 1 \end{aligned}$	9R-Lo9   Net quality log	$\begin{array}{\|l\|l\|l\|} \hline 1 \text {-bit } \\ \text { M-Bus } \end{array}$
Reactive energy (consumption) L1-L3	Voltage   (per phase)	$\begin{aligned} & 41 \pi \\ & \text { Input } 2 \end{aligned}$	54-109   System status	PuL5E   Pulse length, pulse frequency, etc.
Reactive energy (supply) L1-L3	Total voltage		$\begin{aligned} & 5 t-\log \\ & \text { ?? } \end{aligned}$	FiL Alarm
Total reactive energy L1-L3	Current (per phase)		Ad-Log   Audit log	tRr IFF   Tariff
Apparent energy (consumption) L1-L3	Power factor (per phase)		$\begin{aligned} & 5 E 9[H \\ & \text { ?? } \end{aligned}$	OULPIt   Output
Apparent energy (supply) L1-L3	Frequency		Rboitt   About	ir 5Et   IR interface (only for internal use)
Total apparent energy L1-L3	Phase angle			U1,   Measuring units (3 or 4-phase)
Active energy (consumption) Tariff	Quadrant			LEdPULS   Pulse LED
Active energy (supply) Tariff	Mains power failure meter			UPGrRdE   Authorisation for upgrades
Reactive energy (consumption) Tariff				r5t r9   Intermediate meter
Reactive energy (supply) Tariff				

- *Output 1 cannot be modified.


## MID energy meters <br> Commissioning

## 3 Commissioning

This section contains a description of the mounting and installation process, as well as the procedure for setting the device functions.

### 3.1 Mounting and installation

The energy meters are designed for mounting on DIN rails (DIN 50 022). The meters are fastened by latching into the locking mechanism of the DIN rails.

Accessibility of the device for operation, testing, inspection, maintenance and repair must be ensured in accordance with DIN VDE 0100-520.

Mounting and commissioning must be performed by an electrician. When planning and installing electrical systems, it is necessary to observe the relevant standards, directives, regulations and provisions.

- Protect device from moisture, dirt and damage during transport, storage and operation.
- Only operate the device within the specified technical data!
- Only operate the device in an enclosed housing (distributor)!

Observe the following steps when installing and testing the meter:

Step	Action
1	S hut off the power supply.
2	Position the meter on the DIN rail and latch it in place.
3	Remove the cable insulation to the length specified on the meter.
4	Connect the cables to the meter in accordance with the connection diagram and tighten the screws ( 3.0 Nm for meters with a direct connection and 1.5 Nm for meters with a transformer connection).
5	Install the line protection:   Meters with direct connection: $\quad 65 \mathrm{~A}$ MCB, C-system or 65 A fuse type gL-gG   Meters with transformer connection:   10 A MCB, B-system or safety fuse, flink.
6	If inputs and outputs are used: Connect the cables to the meter in accordance with the connection diagram and tighten the screws ( 0.25 Nm ). Establish the connection with the external power supply (max. 240 V ).
7	If communication (M-Bus, Modbus RTU) is used: Connect the cables to the meter in accordance with the connection diagram and tighten the screws ( 0.25 Nm ).
8	Check that the meter is connected to the correct voltage and whether the phase connections and neutral conductors (if used) are connected to the correct terminals.
9	When using measurement transformer meters, make sure the flow direction of the primary and secondary current of the external current transformer is correct. Also check that the current transformers are connected to the meter with the correct terminals.
10	Activate the current connection. If the display shows a warning symbol, refer to chapter Protocol storage logs, p. 56 ff for the description.
11	Check under the menu item "Instantaneous Values" in the meter whether the values for the voltage, current strength, energy and power factors lie within the normal range and whether the current direction is correct (the total energy should be positive for an energy-consuming load). For comprehensive testing insofar as possible, the meter should be connected to the desired load, if possible a load with a current strength greater than zero to all phases.

## MID energy meters Commissioning

## Delivery condition

Parameters	Display	B21	B 23	B24
C urrent transformer ratio	[L rRta	-	-	$\begin{aligned} & 5-5 \\ & 5 / / 5 \end{aligned}$
Connection type/wires	$\because 1155$	-	4 LPEn   4-phase	4 LPE   4-phase
Pulse frequency	FrEq	100 pulse/kW h	100 pulse/kWh	10 pulse/kWh
Pulse length	LEnGLh	100 ms	100 ms	100 ms

## Cleaning

Dirty devices can be cleaned with a dry cloth. If this is insufficient then a cloth lightly dampened with soapy water can be used. Never use abrasive substances or solvents.

## Maintenance

The device is maintenance-free. In case of damage, e.g. due to transport and/or storage, repairs must not be performed by external persons. If the device is opened, the warranty is voided.

## MID energy meters Commissioning

### 3.2 Settings

Settings can only be implemented via the main menu $>$ SEt.
Depending on the meter type, it is possible to set all or some of the following functions:

- Transformer ratio CT (current)
- Measuring units (connection of 3 or 4 phases)
- Pulse output
- Outputs
- Alarms
- M-Bus
- RS-485
- Optical IR interface (only for internal use!)
- Authorisation for updates
- Pulse LED on the device front
- Tariff settings
- Delete/reset intermediate meter (not available with B21, B23 and B24)



## MID energy meters Commissioning

### 3.2.1 Setting the transformer ratio

The transformer ratio CT (current) can only be set with measurement transformer meters of type B24.


Proceed as follows:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\Delta$ button and confirm the selection with $\square$.

You are now in the settings menu.
3. Select $[t$ rAt io with the $\square$ button and confirm the selection with $\because$
4. Using the $\square$ button select the desired options for meter (primary value; display Pri ) or denominator (secondary value; display $5 E[$ ). Confirm the selection with

The value appears in the display.
5. After pressing the button, the digit in the display begins to flash. Using the $\square$ button, change the desired value of the digit. Use to confirm the selection and change to the next digit.

Note:
The transformer meters are already equipped with pre-installed "ready to use" transformer ratios. This enables rapid selection of conventional current transformer ratios.
The table with the "ready to use" transformer ratios contains the following values: 5/5, 75/5, 100/5, 150/5, 200/5, 250/5, 300/5, 400/5, 500/5, 600/5, 700/5, 800/5 and 900/5.

The setting of individual values for the primary and secondary side that deviate from the "ready to use" values is naturally still possible.

## MID energy meters Commissioning

For the primary value, 4 digits are available for the values $0 . . .9,999$.
For the secondary value, one digit is available for the values $0 \ldots 9$.

```
Example
Values greater than or equal to 1 must be set for the meter and denominator.
Transformer ratio factory setting=1.
Example: Transformer ratio 1,000:1
5-5 = Ready to use values up to 900-5
Pri = Primary = Current transformer primary side = = ,000
5EL = Secondary = Current transformer secondary side = 1
```


## MID energy meters Commissioning

### 3.2.2 Setting measuring units

The meters of type B23 and B24 can either be connected with three phases ( $3 L P E$ ) or four phases (4 LPEn).


Configure the connection type in the following way:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with $\left.\begin{array}{l}\square .0 \\ \hline 50\end{array}\right)$

You are now in the settings menu.
3. Select '_"'r $-\boxed{\square}$ with the button and confirm the selection with

## ok

The display now shows the current configuration ( $3 L P E$ or $4 L P E \pi$ ) of the connection type.
Factory setting: 4 LPEn
4. After pressing the $\triangle$ button, the display begins to flash. Now press the button to select the connection type. Confirm the selection with or

## MID energy meters Commissioning

### 3.2.3 Setting the pulse output

Output 1 is defined as the active energy pulse output. The pulse frequency and length are adjustable.
Output 2 can be programmed as a pulse output or an alarm output as follows.


Set the pulse output in the following way:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with | OK |
| :--- |
| 5$)$ | .

You are now in the settings menu.
3. Select PLLL 5E with the $\square$ button and confirm the selection with $\overbrace{4}^{6}$.

4. The display now shows the outputs $i_{-} P L$ or $2_{_} P L$ with meters with the silver functionality. Select the pulse output that you wish to configure with the $\square$ button and confirm the selection with | 6 . 4. |
| :--- |
| 10 | .

The following setting options are available:

Indication in the display	Meaning	
GURAL	qUAnt:	Energy values
FrEG	FrEq:	Pulse frequency
LEnGLh	Length:	Pulse length
OULPGL	OutPUt:	Output

## MID energy meters Commissioning

## Energy values

1. In order to adjust the energy values to be transferred, select 9 binit with the and confirm the selection with 장

The following types energy values are available for output 2:

Indication in the display	Meaning	
RLE ;	$\begin{aligned} & \text { Act } \\ & \text { IM: } \end{aligned}$	Imported active energy
RIE E	$\begin{aligned} & \text { Act } \\ & \text { EX: } \end{aligned}$	Exported active energy
-EAC :	$\begin{aligned} & \text { reA } \\ & \text { IM: } \end{aligned}$	Imported reactive energy
rEAL E	$\begin{aligned} & \text { reA } \\ & \text { EX: } \end{aligned}$	Exported reactive energy
notUSEd	Not used:	Inactive

2. Press the button. The display flashes.
3. Select the energy value to be transferred with thebutton and confirm the selection with

Press and hold the button to return to the setting options.
Now configure the pulse frequency.

## Pulse frequency

1. In order to set the pulse frequency, select $\operatorname{Fr} E \square$ with the $\square$ button and confirm the selection with 잢 The set pulse frequency is displayed.
The digits of the pulse frequency must be individually set.
Possible pulse frequencies: $\quad 0 . . .999,999$ pulse/kW h or pulse/MWh
Factory setting: $\quad 100$ pulse/kW h
2. Press the button. The active digit flashes.

Change the value of the first digit with the $\square$ button and confirm with $\quad \underset{0}{0}$.
Change the remaining digits as described previously, until you have set the desired value.
Press and hold the button to return to the setting options.
Now configure the pulse length.

## MID energy meters Commissioning

## Pulse length

 The set pulse length is displayed.
The digits of the pulse length must be individually set.
Possible pulse length: $10 \ldots 990 \mathrm{~ms}$
Factory setting: 100 ms
2. Press the button. The active digit flashes.

Change the value of the first digit with the $\square$ button and confirm with $\Delta$.
Change the remaining digits as described previously, until you have set the desired value.
Press and hold the button to return to the setting options.
Now configure the outputs.

## Output

 Available settings:

Meter	
OFF	
1 OUt	active energy pulse output
2 OUL	pulse / alarms

2. Press the beT button. The display flashes.

Change the setting with the $\square$ button and confirm with | 0 . |
| ---: |
| . |

## MID energy meters Commissioning

### 3.2.4 Setting output 2

A range of different settings can be implemented for output 2.
Note: The programming of output 1 cannot be modified. This is
permanently programmed as the pulse output active energy consumption.


Set the outputs in the following way:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with $\begin{array}{r}0 k \\ \hline\end{array}$.

You are now in the settings menu.
3. Select $\square \mathbb{L L}$ with the $\square$ button and confirm the selection with $\square$
4. The display shows the current output set.

Select the output that you wish to configure with the $\square$ button and confirm the selection with OK. The following setting options are available:

Indication in the   splay	Meaning	
CaIII	CoMM:	Communication output
PULSE	PULSE:	Pulse output
On	On:	Output always on
DFF	OFF:	Output always off

## MID energy meters Commissioning

### 3.2.5 Setting alarm for output 2



If output 2 is used as an alarm output then the alarm must be configured. 25 different alarms are available for selection. One alarm can be assigned to one output.

Set the values, thresholds and delays, etc. for the alarms in the following way:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E E$ with the $\square$ button and confirm the selection with $\square_{5}$.

You are now in the settings menu.
3. Select $P L$ with the $\square$ button and confirm the selection with $\begin{aligned} & \square . \\ & b\end{aligned}$.
4. The display now shows the alarms I_RL to こ5_ RL .

Select the alarm that you wish to configure with the $\square$ button and confirm the selection with | $\square$. |
| :--- |
| 4. | . The following setting options are available:

Indication in the display	Meaning	
quinnt	qUAnt:	Alarm type (dependent on meter type, see table below)
On LEu	On LEv:	Trigger threshold (alarm active)
Bn dEL	On dEL:	Switch-on delay in seconds
aFF Lu	oFF Lv:	Trigger threshold (alarm inactive)
OFF dE	Off dE:	Switch-off delay in seconds
Lロ9	LoG:	Log alarm
OLLPUL	OutP Ut:	Output 2, on which the alarm should act

## MID energy meters Commissioning

5. In order to set the alarm type, first select 9 LIARE with the $\square$ button and confirm the selection with Press the bet button. The display flashes.

Now press the $\square$ button to select the desired alarm type. Confirm the selection with the button.

The following alarm values are available:

Alarm values B21 (single phase)

Alarm type	Value	Unit
Inactive	-	-
Active power	$0 \ldots 9,999$	$\mathrm{~W} / \mathrm{kW} / \mathrm{MW}$
Reactive power	$0 \ldots 9,999$	Var / kVar / MVar
Apparent power	$0 \ldots 9,999$	$\mathrm{VA} / \mathrm{kVA} / \mathrm{MVA}$
Current L1	$0.01 \ldots 99.99$	$\mathrm{~A} / \mathrm{kA}$
Voltage L1	$0.1 \ldots 999.9$	$\mathrm{~V} / \mathrm{kV}$
Power factor	$0.000 \ldots 0.999$	-

## MID energy meters Commissioning

Alarm values B 23/B24 (three-phase)

Alarm type	Value	Unit
Inactive	-	-
Total active power	$0 \ldots 9,999$	$\mathrm{~W} / \mathrm{kW} / \mathrm{MW}$
Total reactive power	$0 \ldots ., 999$	Var / kVar / MVar
Total apparent power	$0 \ldots . .999$	$\mathrm{VA} / \mathrm{kVA} / \mathrm{MVA}$
Total power factor	$0.000 \ldots 0.999$	-
Current L1	$0.01 \ldots 99.99$	$\mathrm{~A} / \mathrm{kA}$
Current L2	$0.01 \ldots 99.99$	$\mathrm{~A} / \mathrm{kA}$
Current L3	$0.01 \ldots 99.99$	$\mathrm{~A} / \mathrm{kA}$
Voltage L1	$0.1 \ldots 999.9$	$\mathrm{~V} / \mathrm{kV}$
Voltage L2	$0.1 \ldots 999.9$	$\mathrm{~V} / \mathrm{kV}$
Voltage L3	$0.1 \ldots 999.9$	$\mathrm{~V} / \mathrm{kV}$
Voltage L1-L2	$0.1 \ldots 999.9$	$\mathrm{~V} / \mathrm{kV}$
Voltage L2-L3	$0.1 \ldots 999.9$	$\mathrm{~V} / \mathrm{kV}$
Voltage L1-L3	$0.1 \ldots 999.9$	$\mathrm{~V} / \mathrm{kV}$
Active power L1	$0.1 \ldots 999.9$	$\mathrm{~W} / \mathrm{kW} / \mathrm{MW}$
Active power L2	$0.1 \ldots 999.9$	$\mathrm{~W} / \mathrm{kW} / \mathrm{MW}$
Active power L3	$0.1 \ldots 999.9$	$\mathrm{~W} / \mathrm{kW} / \mathrm{MW}$
Reactive power L1	$0.1 \ldots 999.9$	$\mathrm{Var} / \mathrm{kVar} / \mathrm{MVar}$
Reactive power L2	$0.1 \ldots 999.9$	$\mathrm{Var} / \mathrm{kVar} / \mathrm{MVar}$
Reactive power L3	$0.1 \ldots 999.9$	$\mathrm{Var} / \mathrm{kVar} / \mathrm{MVar}$
Apparent power L1	$0.1 \ldots 999.9$	$\mathrm{VA} / \mathrm{kVA} / \mathrm{MVA}$
Apparent power L2	$0.1 \ldots 999.9$	$\mathrm{VA} / \mathrm{kVA} / \mathrm{MVA}$
Apparent power L3	$0.1 \ldots 999.9$	$\mathrm{VA} / \mathrm{kVA} / \mathrm{MVA}$
Power factor L1	$0.000 \ldots 0.999$	-
Power factor L2	$0.000 \ldots 0.999$	
Power factor L3	$0.000 \ldots 0.999$	

## MID energy meters Commissioning

6．In order to set the trigger threshold at which an alarm is activated or deactivated，select the option on $L E \leq$ or oFF $L_{u}$ with the button and confirm the selection with

Press the button．The display flashes．
Using thebutton，it is now possible to select the desired value（e．g． 285 V ）for the trigger threshold．Confirm the selection with the button．
7．In order that an alarm is activated or deactivated，it is possible to set a switch－on or switch－off delay．If the previously set trigger threshold is exceeded or undercut for the set time duration，the alarm is activated or deactivated．In order to set the switch－on or switch－off delay at which an alarm is activated or deactivated，select the option an dEL or oFF dE with the $\square_{\text {button and confirm the selection with }}$ 狍． Press the button．The display flashes．Now press the button to select the desired time duration in seconds．Confirm the selection with the button．

8．In order to $\log$ an alarm，select the option $\mathrm{L} \square 9$ with the 淒 button and confirm the selection with 局．
Press the button．The display flashes．Using the button，select the desired setting（ON：Log，OFF：Do not $\log$ ）．Confirm the selection with the button．
9．In order to set the output on which the alarm settings should act，select the option OULP㳣 with the and confirm the selection with

Available settings：

## Meter

DFF

2 0
Press the button．The display flashes．Using the button，select the desired setting．Confirm the selection with the button．

## MID energy meters Commissioning

### 3.2.6 Setting the M-Bus

You can set the M-Bus with meters with a hard-wired M-Bus interface.


Switch on the M-Bus as follows:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with $\Delta$.

You are now in the settings menu.
 The following setting options are available:

Indication in the   display	Meaning	
bRUd	bAUd:	Baud rate
RddrE5	AddrES:	M-Bus address
RcaE55	AccES:	Access
Snd 5t	Snd St:	Send status
PR55'_d	PASSW d:	Password
Pratar	Protoc:	Protocol, cannot be modified

## MID energy meters Commissioning

4. In order to implement a setting, select the desired option with the $\square$ button and confirm the selection with OK. The display shows the current value set.

Press the button. The value in the display flashes.
Now press the $\square$ button to select the desired value. Confirm the selection with the button.
5. Proceed as described in point 4, in order to implement further settings.

For further settings please refer to Table Protocol details on p. 45.

## MID energy meters Commissioning

### 3.2.7 Modbus settings



## MID energy meters Commissioning

Implement the settings as follows:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with $\begin{aligned} & \text { OK } \\ & 4\end{aligned}$.

You are now in the settings menu.
3. Select $r 5-485$ with the $\square$ button and confirm the selection with
4. Confirm the selection with the button,

Depending on the selected protocol type, the following setting options are available:

Modbus		
Indication in   the display	Meaning	
bAUd	bAUd:	Baud rate
RddrES	AddrES:	Address
PRr NU	PAritY:	Parity

5. In order to implement a setting, select the desired option with the button and confirm the selection with display shows the current value set.

Press the button. The value in the display flashes.

Now press the $\square$ button to select the desired value. Confirm the selection with the button.
6. Proceed as described in point 5 , in order to implement further settings.

For further settings please refer to Table Protocol details on p. 45.

## MID energy meters Commissioning

### 3.2.8 Infra-red interface (only for internal use)

The IR interface can communicate via M-Bus and is only available for internal use!

M-Bus settings


## MID energy meters Commissioning

Implement the settings as follows:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with thebutton and confirm the selection with

You are now in the settings menu.
3. Select $\triangle P L$ with the $\square$ button and confirm the selection with $\begin{aligned} & \text { OK } \\ & j \text {, }\end{aligned}$.
4. Confirm the selection with the button.

Depending on the selected protocol type, the following setting options are available:

	ModBus	
Indication   in the   display	Meaning	Baud   rate
bRill	bAUd:	Address
AddrE5	AddrES:	

5. In order to implement a setting, select the desired option with the $\square$ button and confirm the selection with The display shows the current value set.

Press the bet button. The value in the display flashes.
Now press the $\square$ button to select the desired value. Confirm the selection with the button.
6. Proceed as described in point 5 , in order to implement further settings.

For further settings please refer to Table Protocol details on p. 45.

## MID energy meters <br> Commissioning

### 3.2.9 Protocol details

Protocol	Access level	Upgrade mode	Send status info	Reset password	P arity	Baud rate	Addres   s	Timeout between octets (ms)	Inactivity timeout (ms)
Modbus (via RS485)	-	-	-	-	None (default)   Odd   Even	$\begin{aligned} & 1,200 \text { *" }^{\prime} \\ & 2,400^{*} \\ & 4,800^{* "} \\ & 9,600 \\ & 19,200 \\ & 38,400 \\ & 57,600 \end{aligned}$	1... 247	-	-
M-Bus (via IR side)	Open   Password   Closed	Active Inactive	Always   Never   If not OK	Yes   No	-	$\begin{aligned} & \hline 2,400 \\ & 4,800 \\ & 9,600 \\ & 19,200 \\ & 38,400 \end{aligned}$	1... 250	-	-

*" $=$ P resently not released.

## MID energy meters Commissioning

### 3.2.10 Setting upgrade authorisation

It is possible to set authorisations for an upgrade.


Implement the settings as follows:

1. Hold the button down for $>1$ second to access the main menu.

You are now in the settings menu.
2. Select $\operatorname{LPG}$ with the $\square$ button and confirm the selection with $\quad$. The display shows the current setting. The following setting options are available:

Indication in the   display	Meaning	
In	On:	ON: Upgrade permitted
IFF	OFF:	OFF: Upgrade not permitted

4. Press the button. The value in the display flashes.

Now press the $\square$ button to select the desired option.
5. Confirm the selection with the button.

## MID energy meters Commissioning

### 3.2.11 Setting the pulse LED

The pulse LED flashes proportionally to the measured energy. It is possible to distinguish between active and reactive energy.


Set the energy type in the following way:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with | OK |
| :--- | .

You are now in the settings menu.
 The following setting options are available:

Indication in   the display	Meaning	
ALE	Active:	Active energy
rEADE	Reactive:	Reactive energy

4. Press the button. The value in the display flashes.

Now press the
 button to select the desired option.
5. Confirm the selection with the button.

## MID energy meters Commissioning

### 3.2.12 Tariff settings (2 tariffs available)

Tariff conversion can take place via the communication interface or the inputs.


Set the desired tariff conversion source in the following way:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with $\begin{aligned} & \square \text {. } \\ & \dagger\end{aligned}$. You are now in the settings menu.
3. Select ERr , IFF with the $\square$ button and confirm the selection with (5). The display shows the current setting. The following setting options are available:

4. Press the button. The value in the display flashes.

Now press the
 button to select the desired option.
5. Confirm the selection with the button.

## MID energy meters Commissioning

3.2.13 Resetting intermediate meters (not available with B21, B23 and B24).

Note: The menu is also available with the variants B21, B23 and B24. However, the meters have no intermediate meter.

The meters have a resettable intermediate meter.


Intermediate meters can be deleted or the meter reading reset to " 0 " in the following way:

1. Hold the button down for $>1$ second to access the main menu.
2. Select $5 E L$ with the $\square$ button and confirm the selection with $\begin{aligned} & \text { OK. } \\ & 4\end{aligned}$.

You are now in the settings menu.
3. Select $r$ 5t ra with the $\square$ button and confirm the selection with $\quad$. The display shows the intermediate meter.

The following intermediate meters are available, which can be reset individually or all together:

Indication in the display	Meaning	
RLE	Act IM:	Active energy consumption
RLE E	Act EX:	Active energy supply
FERL	rEA IM:	Reactive energy consumption
FERL E	rEA EX:	Reactive energy supply
RLL	ALL:	All intermediate meters

4. Select the desired option with thebutton and confirm the selection withPress and hold thebutton to change the setting. The value ( $r 5 E L$ ) in the display flashes.
5. Confirm the selection with the button.

MID energy meters Commissioning

## MID energy meters Commissioning

### 3.3 Technical description

This chapter contains the technical descriptions of the meter functions.

### 3.3.1 Energy values

The energy values are stored in energy registers. The various energy registers are divided into:

- Registers for active, reactive and apparent energy
- Resettable registers
- Registers for current or historical values

The energy values can either be read off by communication or directly in the display with the help of the buttons.

## Primary values

For transformer meters with external current transformers, the register value is multiplied by the transformer conversion ratio before display or sending via communication. This value is also referred to as the primary value.

## Presentation of register values

With directly connected meters the energy is usually displayed as a fixed unit and decimal value (usually kWh without decimal places).
With transformer meters that display primary values, the energy values can be very high in the case of a high current transformer conversion ratio. The meter usually adjusts the unit and the number of decimal places to be displayed automatically.
If the energy is displayed with fixed units and decimal places, the energy jumps to zeros if the display exceeds the maximum value. However, the meter contains further internal digits, which can be read out via communication if a communication interface is available. In the following example 248375 is displayed, while the internal register contains the value 19248375.6.
The following figure shows a display with fixed unit and decimal places:


## MID energy meters <br> Commissioning

### 3.3.2 Measured values

The following table contains all available measured values of the meter.

	B21	B23/B 24	
Measured value	1-phase, 2-conductor	3-phase, 4-conductor	3-phase, 3-conductor
Total active power, *2*3	X	X	X
Active power, L1 *2*3		x	X
Active power, L2 *2*3		x	
Active power, L3 *2*3		x	$x$
Total reactive power *2*3	X	x	X
Reactive power, L1 *2*3		x	X
Reactive power, L2 *2*3		x	
Reactive power, L3 *2*3		x	x
Total apparent power *2*3	x	x	X
Apparent power, L1 *2*3		X	X
Apparent power, L2 *2*3		x	
Apparent power, L3 *2*3		X	x
Voltage, L1-N *2*3	x	x	
Voltage, L2-N *2*3		x	
Voltage, L3-N *2*3		X	
Voltage, L1-L2 *2*3		x	x
Voltage, L2-L3 *2*3		x	X
Voltage, L1-L3 *2*3		X	
Current strength, L1 *2*3	x	x	x
Current strength, L2 *2*3		x	
Current strength, L3 *2*3		x	x
Current strength, $\mathrm{N} * 2 * 3$		$x$	
Frequency *2*3	x	x	x
Total power factor *2*3	x	x	X
Power factor, L1 *2*3		x	X
Power factor, L2 *2*3		x	
Power factor, L3 *2*3		x	X
Total phase angle power*	X	x	X
Phase angle power, L1*		X	X
Phase angle power, L2*		x	
Phase angle power, L3*		x	X
P hase angle voltage, L1*	x	x	X
P hase angle voltage, L2*		x	
P hase angle voltage, L3*		X	X
P hase angle current strength, L1*		X	X
P hase angle current strength, L2*		X	
P hase angle current strength, L3*			
Total active quadrant*	x		
Active quadrant, L1*			
Active quadrant, L2*			
Active quadrant, L3*			

${ }^{* 2}=$ Measured value in the display ${ }^{* 3}=$ Measured value in GridVis * $=$ Only via Modbus register

## MID energy meters Commissioning

## Accuracy

The accuracy of the data is defined within a voltage range of $20 \%$ of the specified rated voltage and a current strength range of $5 \%$ of the basic current to the maximum current strength.

The accuracy of all data reflects the specified accuracy for the energy measurement with the exception of the phase angle for voltage and current.
The accuracy of the phase angle for voltage and current is 2 degrees

### 3.3.3 Alarms

The alarm function serves to monitor measured values of the meter. Recognition can take place for high or low values. For high values an alarm is triggered if a measured value exceeds a defined threshold. For low values an alarm is triggered if a measured value undershoots a defined threshold.

A total of 25 alarms can be configured. Configuration takes place by communication or via the buttons directly on the meter.

The following measured values can be monitored:

Voltage, L1	Total reactive power
Voltage, L2	Reactive power, L1
Voltage, L3	Reactive power, L2
Voltage, L1-L2	Reactive power, L3
Voltage, L2-L3	Total apparent power
Voltage, L1-L3	Apparent power, L1
Current strength, L1	Apparent power, L2
Current strength, L2	Apparent power, L3
Current strength, L3	Total power factor
Total active power	Power factor, L1
Active power, L1	Power factor, L2
Active power, L2	Power factor, L3
Active power, L3	

## Functional description

If the value of the monitored measured variable exceeds the activation threshold for the set time interval then the alarm is triggered. If the value of the monitored measured variable undershoots the activation threshold for the set time interval again, the alarm is deactivated.
If the activation threshold is higher than the deactivation threshold, the alarm is triggered if the monitored value exceeds the activation threshold.

If the activation threshold is lower than the deactivation threshold, the alarm is triggered if the monitored value undershoots the activation threshold.

## MID energy meters <br> Commissioning

### 3.3.4 Inputs and outputs

Inputs and outputs have optocouplers and are galvanically separated from the remaining meter electronics. These are polarity-independent and can conduct DC and alternating current.
Inputs that are not connected are not live / connected to voltage.

## Functions of the inputs

The input counts pulses, detects activity and the current status. The meter values can be read directly off the display on the meter or via communication.

The input registers can be reset via communication or via the buttons directly on the meter.

## Functions of the outputs

The outputs can be controlled via communication or alarm.

### 3.3.5 Tariff inputs

## Tariff control

In the case of meters with a tariff function, the tariffs can either be controlled via communication or via 1 tariff input.
Tariff control via the input takes place through a suitable combination of "voltage" or "no voltage" at the input or inputs. For every combination of "voltage/no voltage", the meter counts the energy in a certain tariff register.

In 4-quadrant meters with active and reactive energy measurement, the meter readings of both energy types are controlled via the same inputs. The active tariff for active and reactive energy is always the same.

## Display of the active tariff

The active tariff is shown in the LCD display by the text " $T x$ " in the status field, whereby x is the tariff number. The active tariff can also be read out via communication.

## Input coding, meters with $\mathbf{2}$ tariffs

The inputs are coded in the binary system. The following table describes the standard coding:

Input 1	Tariff
OFF	$=\mathrm{T} 1$
ON	$=\mathrm{T} 2$

## MID energy meters Commissioning

### 3.3.6

## Pulse outputs

The meters equipped with pulse outputs have up to 2 outputs. The meter sends a certain number of pulses (pulse frequency) per kilowatt hour (kVar for reactive energy) via pulse outputs.
In the case of transformer meters (B24), the pulse outputs send primary values. This means that the pulses are sent proportional to the real primary energy, whereby the current transformer conversion ratios programmed in the meter are taken into consideration.

For directly connected meters (B21 and B23), no external transformers are used and the number of pulses sent is directly proportional to the energy that the meter measures.

## Pulse frequency and pulse length

The pulse frequency and pulse length can be set with the buttons on the meter or via communication. In the case of meters with more than one pulse output, all outputs have the same pulse frequency and pulse length.
The pulse frequency can be configured and can be set to a value of $1 \ldots 9,999$ pulses. The value must be a whole number. The unit is variable. Available for selection are pulse/ kW h , pulse/ Wh and pulse/ $/ \mathrm{MWh}$.
The pulse length can be set to a value of $10 \ldots 990 \mathrm{~ms}$.

## Specifying pulse frequency/length

If the energy is too high for a certain pulse frequency and pulse length then there is a risk of the pulses overlapping. In this case the meter sends a new pulse (relay closed), before the previous pulse ends (relay open), and the pulse is lost. In the worst case, the relay remains constantly closed. As such, the maximum permissible pulse frequency should be calculated for a location with consideration to the estimated maximum energy consumption and pulse output data of the meter.

The following formula applies to this calculation:
Max. pulse frequency $=1000 * 3600 / \mathrm{U} / \mathrm{I} / \mathrm{n} /$ (Ppause + Plength $)$
U and I are the estimated maximum values for voltage (in volts) and current strength (in ampere) here, and n is the number of phases (1-3).

Plength and Ppause are the pulse length and required pulse pause (in seconds).
A common minimum pulse length and pulse pause is 30 ms . This reflects the S 0 and IEC standards.

## Note

U and I must be the primary values in transformer meters, if external current transformers are programmed in the meter.

## Examples

Example 1:
Directly measuring meter (3-phase) with estimated maximum voltage of 250 V , current strength of 65 A , pulse length 100 ms and required pulse pause 30 ms .
The maximum permitted pulse frequency is therefore:
$1000 * 3600 / 250 / 65 / 3 /(0.030+0.100))=568$ pulse $/ \mathrm{kWh}(\mathrm{kVarh})$

## Example 2:

Transformer meter (3-phase) with estimated maximum voltage of 63 V and current strength of $6 * 50 \mathrm{~A}=300$ A (CT-ratio 50), pulse length 100 ms and required pulse pause 30 ms .
The maximum permitted pulse frequency is therefore:
$1000 * 3600 / 63 / 300 / 3 /(0.030+0.100)=488.4$ pulse $/ \mathrm{kWh}(\mathrm{kVarh})$

## MID energy meters <br> Commissioning

### 3.3.7 Protocol storage logs

The meter has a total of five different protocol stores, also known as logs:

- $\quad$ System log
- Event log
- Power quality log
- Audit log
- $\quad$ Settings $\log$

Log entries can be read directly off the display on the meter.
In the system log, event $\log$ and power quality log it is possible to store up to $500 \log$ entries. When this maximum is reached, the oldest entries are overwritten.
In the audit log it is possible to store up to 40 log entries. When this maximum is reached, no further entries can be stored. Firmware upgrades will fail in this case, because it is not possible to save any further log entries.
In the settings log it is possible to store up to 80 log entries. When this maximum is reached, no further entries can be stored. New settings for CT or a change to the connection type (3 or 4-phase) are no longer accepted because no further log entries can be saved.

The entries in the system log, event $\log$ and power quality log can be deleted via communication.

## System log

This log saves error events in the meter.
The following events are stored in this log:

- Program CRC errors - errors when testing the firmware consistency.
- Errors in the data memory - the data in the long-term memory is damaged.


## MID energy meters <br> Commissioning

## Event log

This log saves alarm events and configuration warnings.
The following events are stored in this log:

- Warning: negative energy phase 1 - phase 1 measures negative energy.
- W arning: negative energy phase 2 - phase 2 measures negative energy.
- Warning: negative energy phase 3 - phase 3 measures negative energy.
- W arning: total negative energy - the total energy is negative.
- Alarm current strength, L1
- Alarm current strength, L2
- Alarm current strength, L3
- Alarm current strength, neutral
- Alarm total active power
- Alarm active power, L1
- Alarm active power, L2
- Alarm active power, L3
- Alarm, total reactive power
- Alarm reactive power, L1
- Alarm reactive power, L2
- Alarm reactive power, L3
- Alarm total apparent power
- Alarm apparent power, L1
- Alarm apparent power, L2
- Alarm apparent power, L3
- Alarm total power factor
- Alarm power factor, L1
- Alarm power factor, L2
- Alarm power factor, L3


## MID energy meters <br> Commissioning

## Power quality log

This log saves alarm events and data on the power quality.
The following events are stored in this log:

- Warning: U1 missing - U1 missing
- Warning: U2 missing - U2 missing
- Warning: U3 missing - U3 missing
- Frequency warning - mains frequency is not stable
- Alarm voltage, L1
- Alarm voltage, L2
- Alarm voltage, L3
- Alarm voltage, L1-L2
- Alarm voltage, L2-L3
- Alarm voltage, L1-L3


## Audit log

Firmware upgrade attempts are stored in the audit log. Firmware upgrades on the meter must be carried out by an administrator. All upgrade attempts recorded in the audit log have been triggered by the administrator.

An event contains the following data:

- Firmware version
- Active energy consumption
- Active energy consumption, L1
- Active energy consumption, L2
- Active energy consumption, L3
- Active energy consumption, tariff 1
- Active energy consumption, tariff 2
- Active energy export
- Firmware upgrade status


# MID energy meters <br> Commissioning 

## Settings log

Events are stored in this log, if the current transformer conversion ratio is changed.
An event contains the following data:

- Firmware version
- Active energy consumption
- Active energy consumption, L1
- Active energy consumption, L2
- Active energy consumption, L3
- Active energy consumption, tariff 1
- Active energy consumption, tariff 2
- Active energy export
- Current transformer value
- Phase


## MID energy meters <br> Commissioning

## Event codes

The following table contains the event codes that may arise in the system log, event log and power quality log:

Event code	Event
41	Program CRC error
42	Data logging error
1,000	W arning: U1 missing
1,001	W arning: U2 missing
1,002	W arning: U3 missing
1,004	W arning: Negative energy element 1
1,005	W arning: Negative energy element 2
1,006	W arning: Negative energy element 3
1,007	W arning: Total negative energy
1,008	Frequency warning
2,013	Alarm 1 active
2,014	Alarm 2 active
2,015	Alarm 3 active
2,016	Alarm 4 active
2,017	Alarm 5 active
2,018	Alarm 6 active
2,019	Alarm 7 active
2,020	Alarm 8 active
2,021	Alarm 9 active
2,022	Alarm 10 active
2,023	Alarm 11 active
2,024	Alarm 12 active
2,025	Alarm 13 active
2,026	Alarm 14 active
2,027	Alarm 15 active
2,028	Alarm 16 active
2,029	Alarm 17 active
2,030	Alarm 18 active
2,031	Alarm 19 active
2,032	Alarm 20 active
2,033	Alarm 21 active
2,034	Alarm 22 active
2,035	Alarm 23 active
2,036	Alarm 24 active
2,037	Alarm 25 active

## MID energy meters Commissioning

## MID energy meters Communication with Modbus

## 4 Communication with Modbus

This chapter describes the mapping of meter data to the Modbus, as well as reading and writing in the register.

### 4.1 Modbus protocol

Modbus is a master-slave communication protocol that supports up to 247 slaves organised as a multidrop bus. The communication is half-duplex.
The services on the Modbus are determined on the basis of function codes.
The function codes are used for reading or writing 16 -Bit registers.
All measured data, such as active energy, voltage or firmware version, are represented by one or more such registers.
For further information regarding the relationship between the number of registers and measured data, see chapter Mapping tables, p. 68.
The Modbus protocol is described in its entirety in the Modbus application protocol specification V1.1b. The document is available under http://www.modbus.orq.

## Supported function codes

The following function codes are supported:

- Function code 3 (reading the holding register)
- Function code 6 (writing a single register)
- Function code 16 (writing multiple registers)

Modbus request telegram
A Modbus request telegram usually exhibits the following structure:

Slave address	Function code	Data	Error check


Slave address	Modbus slave address, 1 byte
Function code	Decides the service to be performed
Data	Dependent on the function code. The length varies.
Error check	CRC, 2 bytes

## Message types

The network messages may be request response or transfer type messages. The request response command sends a request from the master to an individual slave, and a response generally follows this.
The transfer command sends a message to all slaves, and a response never follows this. The transfer is supported by the function codes 6 and 16 .

## MID energy meters Communication with Modbus

### 4.1.1 Function code 3 (reading the holding register)

Function code 3 is used for reading the measured values or other information from the electricity meter. It is possible to read up to 125 successive registers simultaneously. This means that multiple values can be read in one request.

## Request telegram

A request telegram has the following structure:

Slave address	Function code	Address	No. of registers	Error check

Example of a request (read the total energy supply, etc.):

Slave address	$0 \times 01$
Function code	$0 \times 03$
Start address, high byte	$0 \times 50$
Start address, low byte	$0 \times 00$
No. of registers, high byte	$0 \times 00$
No. of registers, low byte	$0 \times 18$
Error check (CRC), high byte	$0 \times 54$
Error check (CRC), low byte	$0 \times C 0$

## Response telegram

A response telegram has the following structure:

Slave address	Function code	Byte count	Register values	Error check

## Example of a response:

Slave address	$0 \times 01$
Function code	$0 \times 03$
Byte count	$0 \times 30$
Value of register $0 \times 5000$, high byte	$0 \times 00$
Value of register 0x5000, low byte	$0 \times 15$
$\ldots$	
Value of register 0x5017, high byte	$0 \times F F$
Value of register 0x5017, low byte	$0 \times F F$
Error check (CRC), high byte	$0 \times X X$
Error check (CRC), low byte	$0 \times X X$

With this example, the slave with the Modbus address 1 responds to a read request. The number of data Bytes is $0 \times 30$. The first register ( $0 \times 5000$ ) has the value $0 \times 0015$, and the last $(0 \times 5017)$ has the value $0 \times F F F F$.

## MID energy meters Communication with Modbus

### 4.1.2 Function code 16 (writing multiple registers)

Function code 16 is used to adjust the settings in the meter, such as date/time, in order to control the output and reset the values, such as the power failure meter. It is possible to write up to 123 successive registers in a single request. This means that multiple settings can be adjusted in a single request, and/or multiple reset processes can be implemented.

## Request telegram

A request telegram has the following structure:

Slave address	Function code	Start address	No. of registers	Byte count	Register values	Error check

Example of a request (set date/time to 11 November 2010, 12:13:14):

Slave address	$0 \times 01$
Function code	$0 \times 10$
Start address, high byte	$0 \times 8 \mathrm{~A}$
Start address, low byte	$0 \times 00$
No. of registers, high byte	$0 \times 00$
No. of registers, low byte	$0 \times 03$
Byte count	$0 \times 06$
Value of register 0x8A00, high byte	$0 \times 0 \mathrm{~A}$
Value of register 0x8A00, low byte	$0 \times 0 \mathrm{~B}$
Value of register 0x8A01, high byte	$0 \times 0 \mathrm{~B}$
Value of register 0x8A01, low byte	$0 \times 0 \mathrm{C}$
Value of register 0x8A02, high byte	$0 \times 0 \mathrm{D}$
Value of register 0x8A02, low byte	$0 \times 0 \mathrm{E}$
Error check (CRC), high byte	$0 \times 8 \mathrm{C}$
Error check (CRC), low byte	$0 \times 82$

With this example, the master sends a write request to the slave with the Modbus address 1 . The first register to be written is $0 \times 8 \mathrm{~A} 00$, and the number of registers to be written is $0 \times 03$. This means that registers $0 \times 8 \mathrm{~A} 00$ to $0 \times 8 \mathrm{~A} 02$ are to be written. Register $0 \times 8 \mathrm{~A} 00$ is set to value $0 \times 0 \mathrm{~A} 0 \mathrm{~B}$, etc.

## Response telegram

A response telegram has the following structure:

Slave address	Function code	Start address	No. of registers	Error check

## Example of a response:

Slave address	$0 \times 01$
Function code	$0 \times 10$
Register address, high byte	$0 \times 8 \mathrm{~A}$
Register address, low byte	$0 \times 00$
No. of registers, high byte	$0 \times 00$
No. of registers, low byte	$0 \times 03$
E rror check (CRC), high byte	$0 \times A A$
E rror check (CRC), low byte	$0 \times 10$

In the example above, the slave with the Modbus address 1 responds to a write request. The first register is $0 \times 8 \mathrm{~A} 00$, and $0 \times 03$ registers have been successfully written.

## MID energy meters Communication with Modbus

### 4.1.3 Function code 6 (writing a single register)

Function code 6 can be used as an alternative to function code 16 , if only one register is to be written. It can be used for example to reset the power failure meter.

## Request telegram

A request telegram has the following structure:

Slave address	Function code	Register address	Register values	Error check

Example of a request (reset the power failure meter):

Slave address	$0 \times 01$
Function code	$0 \times 06$
Register address, high byte	$0 \times 8 \mathrm{~F}$
Register address, low byte	$0 \times 00$
No. of registers, high byte	$0 \times 00$
No. of registers, low byte	$0 \times 01$
Error check (CRC), high byte	$0 \times 62$
Error check (CRC), low byte	$0 \times D E$

## Response telegram

When using function code 6 the response telegram is an echo of the request telegram.

### 4.1.4 Exception responses

If an error occurs when processing a request, the meter issues an exception response, which contains an exception code.

## Exception telegram

A exception telegram has the following structure:

Slave address	Function code	Exception code	Error check

In the exception response, the function code is set to the function code of the request plus $0 \times 80$.

## Exception codes

The exception codes used are listed in the following table:

Exception code	Exception	Definition
01	Illegal function	A funcion code that is not supported has been used.
02	Illegal data address	The requested register is outside the allowed range.
03	Illegal data value	The structure of a received message is incorrect.
04	Slave device failure	Processing the request fail due to an internal error in meter.

## MID energy meters Communication with Modbus

### 4.2 Reading and writing in the register

## Legible registers

The legible range in the Modbus mapping comprises the registers $1000-8$ EFF (hexadecimal). Reading registers within this range leads to a normal Modbus response. It is possible to read an arbitrary number of registers between 1 and 125 , i.e. it is not necessary to read out all registers in a telegram. All attempts to read outside of this range lead to an exception due to an impermissible data address (Modbus exception code 2).

## Multiple register values

With quantities that are presented as more than 1 register, the most important Byte is in the high Byte of the first (lowest) register. The least important Byte is in the low Byte of the last (highest) register.

## Unused registers

Unused registers within the mapping range, e.g. missing quantities in a connected meter, lead to a normal Modbus response, but the value of the register is set to "invalid".
In the case of quantities with the data type "unsigned", the value in all registers is FFFF. In the case of quantities with the data type "signed", the value is the highest value suitable for expressing. This means that the quantity represented by just one register has the value 7FFFF. A quantity represented by two registers has the value 7FFFFFFF, etc.

## Writing in the registers

Writing in the registers is only permissible for registers that are listed in the mapping tables as writable. The attempt to write in a register that is listed as writable, but that is not supported by a meter, leads to an error indication.

## Note

It is not possible to modify parts of a setting.

## Verification of the settings values

Once you have set a value in the meter, it is advisable to read the value in order to verify the result, because verification is not possible if a write process of the Modbus response was successful.

## MID energy meters Communication with Modbus

### 4.3 Mapping tables - standard register compatible with UMG devices

The aim of this section is to explain the relationship between the number of registers and measured data.

## Contents of the mapping tables

The following table explains the contents of the mapping tables:

Quantity	Name of the meter quantity or other information available in the meter
Details	Refinement of the Quantity column
Start Reg (DEZ)	Decimal number for the first (lowest) Modbus Register for this quantity *
Size	Number of Modbus registers for the meter Quantity. A Modbus Register is 16 bits long.
Unit	Unit for the Quantity (if applicable)
Data type	Data type for this Quantity, i.e. how the value in the Modbus registers should be interpreted

*Is expressed exactly as it is sent on the bus. This means do not subtract 40,000 or reduce by 1 , as is conventional with Modbus products.

## Standard register:

Quantity	Start reg (DEZ)	Size	Unit	Data type
Voltage L1-N	19000	2	V	FLOAT (IEEE 754)
Voltage L2-N	19002	2	V	FLOAT (IEEE754)
Voltage L3-N	19004	2	V	FLOAT (IEEE754)
Voltage L1-L2	19006	2	V	FLOAT (IEEE754)
Voltage L2-L3	19008	2	V	FLOAT (IEEE754)
Voltage L3-L1	19010	2	V	FLOAT (IEEE 754)
Apparent current, L1-N	19012	2	A	FLOAT (IEEE754)
Apparent current, L2-N	19014	2	A	FLOAT (IEEE754)
Apparent current, L3-N	19016	2	A	FLOAT (IEEE754)
Not used	19018	2		
Real power L1-N	19020	2	W	FLOAT (IEEE754)
Real power L2-N	19022	2	W	FLOAT (IEEE754)
Real power L3-N	19024	2	W	FLOAT (IEEE 754)
Real power L1+L2+L3	19026	2	W	FLOAT (IEEE 754)
Apparent power L1-N	19028	2	VA	FLOAT (IEEE 754)
Apparent power L2-N	19030	2	VA	FLOAT (IEEE754)
Apparent power L3-N	19032	2	VA	FLOAT (IEEE 754)
Apparent power L1+L2+L3	19034	2	VA	FLOAT (IEEE 754)
Reactive power L1	19036	2	var	FLOAT (IEEE754)
Reactive power L2	19038	2	var	FLOAT (IEEE754)
Reactive power L3	19040	2	var	FLOAT (IEEE754)
Reactive power L1+L2+L3	19042	2	var	FLOAT (IEEE 754)
Power Factor L1	19044	2	-	FLOAT (IEEE754)
Power Factor L2	19046	2	-	FLOAT (IEEE754)
Power Factor L3	19048	2	-	FLOAT (IEEE 754)
Measured frequency	19050	2	Hz	FLOAT (IEEE 754)
Not used	19052	2		
Real energy L1	19054	2	Wh	FLOAT (IEEE754)
Real energy L2	19056	2	Wh	FLOAT (IEEE 754)
Real energy L3	19058	2	Wh	FLOAT (IEEE 754)
Real energy L1+L2+L3	19060	2	Wh	FLOAT (IEEE754)
Real energy L1, consumed	19062	2	Wh	FLOAT (IEEE 754)
Real energy L2, consumed	19064	2	Wh	FLOAT (IEEE 754)
Real energy L3, consumed	19066	2	Wh	FLOAT (IEEE 754)
Real energy L1+L2+L3, consumed	19068	2	Wh	FLOAT (IEEE754)

## MID energy meters <br> Communication with Modbus

Quantity	Start reg (DEZ)	Size	Unit	Data type
Real energy L1, delivered	19070	2	Wh	FLOAT (IEEE 754)
Real energy L2, delivered	19072	2	Wh	FLOAT (IEEE 754)
Real energy L3, delivered	19074	2	Wh	FLOAT (IEEE 754)
Real energy L1+L2+L3, delivered	19076	2	Wh	FLOAT (IEEE 754)
Apparent energy L1	19078	2	VAh	FLOAT (IEEE 754)
Apparent energy L2	19080	2	VAh	FLOAT (IEEE 754)
Apparent energy L3	19082	2	VAh	FLOAT (IEEE 754)
Apparent energy L1+L2+L3	19084	2	VAh	FLOAT (IEEE 754)
Reactive energy L1	19086	2	varh	FLOAT (IEEE754)
Reactive energy L2	19088	2	varh	FLOAT (IEEE 754)
Reactive energy L3	19090	2	varh	FLOAT (IEEE754)
Reactive energy L1+L2+L3	19092	2	varh	FLOAT (IEEE 754)
Reactive energy L1, inductive	19094	2	varh	FLOAT (IEEE 754)
Reactive energy L2, inductive	19096	2	varh	FLOAT (IEEE 754)
Reactive energy L3, inductive	19098	2	varh	FLOAT (IEEE 754)
Reactive energy L1+L2+L3, inductive	19100	2	varh	FLOAT (IEEE 754)
Reactive energy L1, capacitive	19102	2	varh	FLOAT (IEEE 754)
Reactive energy L2,capacitive	19104	2	varh	FLOAT (IEEE 754)
Reactive energy L3, capacitive	19106	2	varh	FLOAT (IEEE 754)
Reactive energy L1+L2+L3, capacitive	19108	2	varh	FLOAT (IEEE 754)
Not used	19110			
Not used	19112			
Not used	19114			
Not used	19116			
Not used	19117			
Not used	19120			

## MID energy meters <br> Communication with Modbus

### 4.4 Mapping tables-special register

The aim of this section is to explain the relationship between the number of registers and measured data.

## Contents of the mapping tables

The following table explains the contents of the mapping tables:

Quantity	Name of the meter quantity or other information available in the meter
Details	Refinement of the Quantity column
Start Reg (Hex)	Hexadecimal number for the first (lowest) Modbus Register for this quantity *
Size	Number of Modbus registers for the meter Quantity. A Modbus Register is 16 bits long.
Res.	Resolution of the value for this Quantity (if applicable)
Unit	Unit for the Quantity (if applicable)
Data type	Data type for this Quantity, i.e. how the value in the Modbus registers should be interpreted

*Is expressed exactly as it is sent on the bus. This means do not subtract 40,000 or reduce by 1 , as is conventional with Modbus products.
Total energy values
All registers in the following table are write-protected:

Quantity	Details	Start reg   (Hex)	Size	Res.	Unit	Data type
Real energy L1+L2+L3,   consumed	kWh	5000	4	0,01	kWh	Unsigned
Real energy L1+L2+L3,   delivered	kWh	5004	4	0,01	kWh	Unsigned
Real energy L1+L2+L3	kWh	5008	4	0,01	kWh	Signed
Reactive energy L1+L2+L3   consumed	kVarh	500 C	4	0,01	kVarh	Unsigned
Reactive energy L1+L2+L3   delivered	kVarh	5010	4	0,01	kVarh	Unsigned
Reactive energy L1+L2+L3	kVarh	5014	4	0,01	kVarh	Signed
Apparent energy L1+L2+L3   consumed	kVAh	5018	4	0,01	kVAh	Unsigned
Apparent energy L1+L2+L3   delivered	kVAh	501 C	4	0,01	kVAh	Unsigned
Apparent energy L1+L2+L3	kVAh	5020	4	0,01	kVAh	Signed
Active consumed CO2	kVAh	5024	4	0,001	kg	Unsigned
Active consumed currency	kVAh	5034	4	0,001	currency	Unsigned

## Energy values by tariffs

All registers in the following table are write-protected:

Quantity	Details	Start reg (Hex)	Size	Res.	Unit	Data type
Real energy L1+L2+L3, consumed	Tariff 1	5170	4	0,01	kWh	Unsigned
Real energy $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3$, consumed	Tariff 2	5174	4	0,01	kWh	Unsigned
Real energy L1+L2+L3, delivered	Tariff 1	5190	4	0,01	kWh	Unsigned
Real energy $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3$, delivered	Tariff 2	5194	4	0,01	kWh	Unsigned
Reactive energy L1+L2+L3 consumed	Tariff 1	51B0	4	0,01	kVarh	Unsigned
Reactive energy L1+L2+L3 consumed	Tariff 2	51B4	4	0,01	kVarh	Unsigned
Reactive energy L1+L2+L3 delivered	Tariff 1	51D0	4	0,01	kVarh	Unsigned
Reactive energy L1+L2+L3 delivered	Tariff 2	51D4	4	0,01	kVarh	Unsigned

## MID energy meters <br> Communication with Modbus

## Energy values per phase

All registers in the following table are write-protected:

Quantity	Details	Start reg   (Hex)	Size	Res.	Unit	Data type
Real energy, consumed	L1	5460	4	0,01	kWh	Unsigned
Real energy, consumed	L2	5464	4	0,01	kWh	Unsigned
Real energy, consumed	L3	5468	4	0,01	kWh	Unsigned
Real energy, delivered	L1	$546 C$	4	0,01	kWh	Unsigned
Real energy, delivered	L2	5470	4	0,01	kWh	Unsigned
Real energy, delivered	L3	5474	4	0,01	kWh	Unsigned
Real energy	L1	5478	4	0,01	kWh	Signed
Real energy	L2	$547 C$	4	0,01	kWh	Signed
Real energy	L3	5480	4	0,01	kWh	Signed
Reactive energy, consumed	L1	5484	4	0,01	kVarh	Unsigned
Reactive energy, consumed	L2	5488	4	0,01	kVarh	Unsigned
Reactive energy, consumed	L3	$548 C$	4	0,01	kVarh	Unsigned
Reactive energy, delivered	L1	5490	4	0,01	kVarh	Unsigned
Reactive energy, delivered	L2	5494	4	0,01	kVarh	Unsigned
Reactive energy, delivered	L3	5498	4	0,01	kVarh	Unsigned
Reactive energy	L1	$549 C$	4	0,01	kVarh	Signed
Reactive energy	L2	54 A0	4	0,01	kVarh	Signed
Reactive energy	L3	54 A4	4	0,01	kVarh	Signed
Apparent energy, consumed	L1	54 A8	4	0,01	kVAh	Unsigned
Apparent energy, consumed	L2	54 AC	4	0,01	kVAh	Unsigned
Apparent energy, consumed	L3	54 B0	4	0,01	kVAh	Unsigned
Apparent energy, delivered	L1	$54 B 4$	4	0,01	kVAh	Unsigned
Apparent energy, delivered	L2	$54 B 8$	4	0,01	kVAh	Unsigned
Apparent energy, delivered	L3	54 BC	4	0,01	kVAh	Unsigned
Apparent energy	L1	$54 C 0$	4	0,01	kVAh	Signed
Apparent energy	L2	$54 C 4$	4	0,01	kVAh	Signed
Apparent energy	L3	$54 C 8$	4	0,01	kVAh	Signed

Resettable intermediate meters (not available with B21, B23 and B24)
All registers in the following table are write-protected:

Quantity	Start reg   (Hex)	Size	Res.	Unit	Data type
Resettable Real energy L1 $+L 2+L 3$,   consumed	552 C	4	0,01	kWh	Unsigned
Resettable Real energy L1 $+\mathrm{L} 2+L 3$,   delivered	5530	4	0,01	kWh	Unsigned
Resettable Reactive energy   L1 $+L 2+L 3$, consumed	5534	4	0,01	kWh	Unsigned
Resettable Reactive energy   L1 $+L 2+L 3$, delivered	5538	4	0,01	Unsigned	

## MID energy meters Communication with Modbus

## Measured values

All registers in the following table are write-protected:

Quantity	Details	Start reg (Hex)	Size	Res.	Unit	Value range	Data type
Voltage	L1-N	5B00	2	01	V		Unsigned
Voltage	L2-N	5B02	2	01	V		Unsigned
Voltage	L3-N	5B04	2	01	V		Unsigned
Voltage	L1-L2	5B06	2	01	V		Unsigned
Voltage	L3-L2	5B08	2	01	V		Unsigned
Voltage	L1-L3	5B0A	2	01	V		Unsigned
Current	L1	5B0C	2	001	A		Unsigned
Current	L2	5B0E	2	001	A		Unsigned
Current	L3	5B10	2	001	A		Unsigned
Active power	Total	5B14	2	001	W		Signed
Active power	L1	5B16	2	001	W		Signed
Active power	L2	5B18	2	001	W		Signed
Active power	L3	5B1A	2	001	W		Signed
Reactive power	Total	5B1C	2	001	Var		Signed
Reactive power	L1	5B1E	2	001	Var		Signed
Reactive power	L2	5B20	2	001	Var		Signed
Reactive power	L3	5B22	2	001	Var		Signed
Apparent power	Total	5B24	2	001	VA		Signed
Apparent power	L1	5B26	2	001	VA		Signed
Apparent power	L2	5B28	2	001	VA		Signed
Apparent power	L3	5B2A	2	001	VA		Signed
Frequency		5B2C	1	001	Hz		Unsigned
Phase angle power	Total	5B2D	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle power	L1	5B2E	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle power	L2	5B2F	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle power	L3	5B30	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle voltage	L1	5B31	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle voltage	L2	5B32	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle voltage	L3	5B33	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle current	L1	5B37	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle current	L2	5B38	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Phase angle current	L3	5B39	1	01	-	$-180^{\circ} \ldots+180^{\circ}$	Signed
Power factor	Total	5B3A	1	0,001	-	$-1,000 \ldots+1,000$	Signed
Power factor	L1	5B3B	1	0,001	-	-1,000... $+1,000$	Signed
Power factor	L2	5B3C	1	0,001	-	$-1,000 \ldots+1,000$	Signed
Power factor	L3	5B3D	1	0,001	-	$-1,000 \ldots+1,000$	Signed
Current quadrant	Total	5B3E	1		-	1... 4	Unsigned
Current quadrant	L1	5B3F	1		-	1... 4	Unsigned
Current quadrant	L2	5B40	1		-	1... 4	Unsigned
Current quadrant	L3	5B41	1		-	1... 4	Unsigned

## Note

The currents are sent as signed 32-Bit whole numbers, which are expressed in W (or Var/VA) with two decimal places. This means that the maximum possible current that can be expressed is approx. $\pm 21$ MW. If the current is higher than this value then the user is advised to read off the current from the DMTME mapping instead, where the scale is in W without decimal places.

## MID energy meters <br> Communication with Modbus

## Inputs and outputs

The following table contains writable and write-protected registers:

Quantity	Details	Start reg   (Hex)	Size	Possible values	Data type	Read/   Write
Output 1		6300	1	ON $=1$, OFF $=0$	Unsigned	R/W
Output 2		6301	1	ON $=1$, OFF $=0$	Unsigned	R/W
Input 1	Current state	6308	1	ON $=1$, OFF $=0$	Unsigned	R
Input 2	Current state	6309	1	ON $=1$, OFF $=0$	Unsigned	R
Input 1	Stored state	6310	1	ON $=1$, OFF $=0$	Unsigned	R
Input 2	Stored state	6311	1	ON $=1$, OFF $=0$	Unsigned	R
Input 1	Counter	6318	4		Unsigned	R
Input 2	Counter	631 C	4		Unsigned	R

## MID energy meters Communication with Modbus

## Production data and identification

All registers in the following table are write-protected:

Quantity	Start reg (Hex)	Size	Data type
Serial number	8900	2	Unsigned
Meter firmware version	8908	8	ASCII string (up to 16 characters)
Modbus mapping version	8910	1	2 bytes
Type designation	8960	6	ASCII string (12 characters, including null   termination)

The firmware version of the meter is expressed as a string with three digits separated by dots, e.g. 1.0.0. Unused Bytes at the end are set to binary zero.
In the register of the Modbus mapping version, the high Byte reflects the higher version (1...255) and the low Byte reflects the lower version (0...255).

## Miscellaneous

In the following table, the date/time and current tariff value are writable. All other registers are write-protected:

Quantity	Start reg (Hex)	Description	Size	Data type	Read/ Write
Current tariff	8A07	Tariff 1... 2	1	Unsigned	R/W
Error flags	8A13	64 flags	4	Bit string	R
Information flags	8A19	64 flags	4	Bit string	R
Warning flags	8A1F	64 flags	4	Bit string	R
Alarm flags	8A25	64 flags	4	Bit string	R
Power fail counter	8A2F		1	Unsigned	R
P ower outage time	8A39	Byte 0... 2: days *   Byte 3: hours   Byte 4: minutes   Byte 5: seconds	2	Date/time	R
Reset counter for active energy consumed *1	8A48		4	Unsigned	R
Reset counter for active energy delivered ${ }^{*} 1$	8A4C		4	Unsigned	R
Reset counter for active energy consumed *1	8A50		4	Unsigned	R
Reset counter for active energy delivered *1	8A54		4	Unsigned	R

* Byte 0 is the highest Byte of the lowest register.
${ }^{*}$ : ( $n o t$ available with B21, B23 and B24)
The registers for resetting the meter show the number of resets of the resettable intermediate meters (not available with B21, B23 and B24).


## MID energy meters <br> Communication with Modbus

## Settings

All registers in the following table have read and write access:

Quantity	Start reg   (Hex)	Size	Res.	Unit	Data type
Current transformer ratio   numerator	8 C04	2		-	Unsigned
Current transformer ratio   denominator	8 C08	2		-	Unsigned
LED source (0 $=$ active   energy, $1=$ reactive energy)	8 CE4	1		-	Unsigned
Number of elements (values   $1 . .3)$	8 CE5	1		Unsigned	

## Operation

All registers in the following table are write-protected:

Quantity	Details	Start reg (Hex)	Size	Action	Data type
Reset power fail counter		8F00	1	Write the value 1 to perform a reset	Unsigned
Reset power outage time		8F05	1	Write the value 1 to perform a reset	Unsigned
Reset input counter	Input 1	8F0B	1	Write the value 1 to perform a reset	Unsigned
Reset input counter	Input 2	8F0C	1	Write the value 1 to perform a reset	Unsigned
Reset stored state	Input 1	8F13	1	Write the value 1 to perform a reset	Unsigned
Reset stored state	Input 2	8F14	1	Write the value 1 to perform a reset	Unsigned
Resettable active energy consumed *1		8F1B	1	Write the value 1 to perform a reset	Unsigned
Resettable active energy delivered *1		8F1C	1	Write the value 1 to perform a reset	Unsigned
Resettable reactive energy consumed *1		8F1D	1	Write the value 1 to perform a reset	Unsigned
Resettable reactive energy delivered *1		8F1E	1	Write the value 1 to perform a reset	Unsigned
Reset system log		8F31	1	Write the value 1 to perform a reset	Unsigned
Reset event log		8F32	1	Write the value 1 to perform a reset	Unsigned
Reset net quality log		8F33	1	Write the value 1 to perform a reset	Unsigned
Reset communication log		8F34	1	Write the value 1 to perform a reset	Unsigned

[^0]MID energy meters
Communication with Modbus

## MID energy meters Communication with M-Bus

## 5 Communication with M-Bus

This chapter contains a description of how the meter data is read and how commands are sent via the M-bus to the meters.

### 5.1 Protocol description

The communication protocol described in this chapter fulfils the requirements of EN 13757-2 and EN 13757-3.
The communication can be divided up into two parts. One part is the reading of data from the meter and the other part is the sending of data to the meters.

The data read-out process starts when the master sends a REQ_UD2 telegram to the meter. The meter responds with a RSP_UD telegram. A typical read-out is a multi-telegram read-out.
Some data in the meter can only be read out by first sending an SND_UD, followed by a REQ_UD2. This applies to load profiles, request files and protocol files.
Using SND_UD telegrams it is possible to send data to the meters.

## Communication objects

The following quantities can be read by sending a REQ_UD2 to the meters.

## B21

Readout from a B21 measurement device with comments (the readout took place with the supply of the measurement device with DC voltage, which resulted in the frequency of the status 15 "not available" being attained).

Sending NKE
1040 FE 3E 16

Reading response
E5

Sending Request User Data 2
10 7B FE 7916

Reading telegram 1
68 BE BE 6808007234120000 2E 28200201200000 ;Mbus header
OE 8400000000000000
8E 108400000000000000
8E 208400000000000000
8E 408400000000000000
8E 508400000000000000
8E 608400000000000000
01 FF 930001
04 FF A0 1500000000

04 FF A1 1500000000
04 FF A2 1500000000
04 FF A3 1500000000
07 FF A6 000000000000000000
;Real energy L1+L2+L3, consumed
;Real energy L1+L2+L3, Tarif 1 consumed
;Real energy L1+L2+L3, Tarif 2 consumed
;Real energy L1+L2+L3, delivered
;Real energy L1+L2+L3, Tarif 1 delivered
;Real energy L1+L2+L3, Tarif 2 delivered
;Active tariff
;Current transformer primary current
(status 15 ("not available") as B21 is a direct connected meter))
;Voltage transformer primary voltage
;Current transformer secondary current
;Voltage transformer secondary voltage
;Error flags

## MID energy meters Communication with M-Bus

```
07 FF A7 000001000000000000 ;Warning flags
07 FF A8000000000000000000 ;Information flags
07 FF A900 00 00000000000000 ;Alarm flags
0D FD 8E 00 09 38 2E 30 2E 38 2E 30 3142
OD FF AA OO OB 4A 30 31 2D 33 35 33 20 31 3242
1F
1C16
Sending Request User Data 2
10 5B FE 59 16
Reading telegram 2
68 A4 A4 68 0800 72 341200 00 2E 28 200202 200000 ;Mbus header
04 FF }9800\mathrm{ 4D 00 00 00
04 A9 00 00 00 00 00
848040 A9 00 00 00 00 00
84808040 A9 00 00 00 00 00
04 FD C8 FF }8100\mathrm{ 5E }02000
04 FD D9 FF }81000000000
0A FF D9 1500 00
02 FF EO 00 00 00
;Power fail counter
;Real power L1+L2+L3
;Reactive power L1+L2+L3
;Apparent power L1+L2+L3
;Voltage, L1-N
;Apparent current, L1-N
;Measured frequency
;Power Factor L1+L2+L3
02 FF D2 00 00 00
;Power Factor L1+L2+L3 angle
01 FF 9700 00
8E 80 40 8400000000 00 00 00
8E 90 40 8400000000000000
8E AO 40 840000 00 00 00 00 00
8E CO 40 8400000000 00 00 00
8E D0 40 8400 00 00 00 00 00 00
8E EO 40 840000 00 00 00 00 00
01 FF AD 00 01
1F
6 7 1 6
 ;Total active quadrant
 ;Reactive energy L1+L2+L3, consumed
 ;Reactive energy L1+L2+L3, Tariff 1 consumed
 ;Reactive energy L1+L2+L3, Tariff 2 consumed
 ;Reactive energy L1+L2+L3, export
 ;Reactive energy L1+L2+L3, Tariff 1 export
 ;Reactive energy L1+L2+L3, Tariff 2 export
 ;Number of elements
 ;Dif 1F means more telegrams exist
 ;Checksum and stop byte
```

Sending Request User Data 2
10 7B FE 7916
Reading telegram 3
6848486808007234120000 2E 2820020320000 ;Mbus header
8140 FD 9A 0000
818040 FD 9A 0000
81 C0 40 FD 9B 0000
81808040 FD 9B 0000
C1 C0 40 FD 9B 0001
C1 808040 FD 9B 0000
8E 808040 FD E1 00000000000000
1F
BB 16
;Mbus header
;Output 1 state
;Output 2 state
;Input 3 state
;Input 4 state
;Input 3 stored state
;Input 4 stored state
;Input 4 pulse counter
;Dif 1 F means more telegrams exist ;Checksum and stop byte

## MID energy meters Communication with M-Bus

```
Sending Request User Data 2
10 5B FE 59 16
Reading telegram 4
68 CF CF 68 0800 72 34 1200 00 2E 28 20 02 04 2000 00
OE 84 FF F2 00 00 00 00 00 00 00
8E 40 84 FF F2 00 00 00 00 00 00 00
8E 80 40 84 FF F2 00 000000000000
8E CO 40 84 FF F2 00 00 00 00 00 00 00
04 FF F1 00 00 00 00 00
8440 FF F1 00 00 00 00 00
84 80 40 FF F1 00 00 00 00 00
84 CO 40 FF F1 00 00 00 00 00
0E FF F9 C4 00 00 00 00 000000
0E FF F9 C9 00 00 00 00 0000000
04 FF A4 00 E8 03 00 00
04 FF A5 00 E8 03 00 00
8E 80 80 40 8400000000000000
8E C0 80 40 840000 00 00 00 00 00
87 80 CO 40 8400 00 00 00 00 00 00 00 00
87 CO CO 40 8400 00 00 00 00 00 00 00 00
878080804084000000000000000000
OF
OA 16
```

*1 (not available with B21, B23 and B24)

## B23 / B24

Readout from a B23 measurement device with comments (the readout took place with the supply of the measurement device with DC voltage, which resulted in the frequency of the status 15 "not available" being attained):

Sending NKE
1040 FE 3E 16

Reading response
E5

Sending Request User Data 2
10 7B FE 7916

Reading telegram 1
68 BF BF 6808007234120000 2E 28200201200000 ;Mbus header
OE 8400000000000000
8E 108400000000000000
8E 208400000000000000
8E 408400000000000000
8E 508400000000000000
; Real energy L1+L2+L3, consumed
; Real energy L1+L2+L3, Tarif 1 consumed
; Real energy L1+L2+L3, Tarif 2 consumed
; Real energy L1+L2+L3, delivered
; Real energy L1+L2+L3, Tarif 1 delivered
; Real energy L1+L2+L3, Tarif 2 delivered

## MID energy meters Communication with M-Bus

01 FF 930001
04 FF AO 1500000000

04 FF A1 1500000000
04 FF A2 1500000000
04 FF A3 1500000000
07 FF A6 000000000000000000
07 FF A7 000401000000000000
07 FF A8 000000000000000000
07 FF A9 000000000000000000
OD FD 8E 00 OA 3231 2E 30 2E 3432 2E 3142
OD FF AA 00 OB 4A 3031 2D 33353320333242 1F

4C 16

Sending Request User Data 2
10 5B FE 5916

Reading telegram 2
68 F2 F2 6808007234120000 2E 28200202200000
04 FF 980050000000
04 A9 0000000000
04 A9 FF 810000000000
04 A9 FF 820000000000
04 A9 FF 830000000000
848040 A9 0000000000
848040 A9 FF 810000000000
848040 A9 FF 820000000000
848040 A9 FF 830000000000
84808040 A9 0000000000
84808040 A9 FF 810000000000
84808040 A9 FF 820000000000
84808040 A9 FF 830000000000
04 FD C8 FF 810023180000
04 FD C8 FF 8200 5B 020000
04 FD C8 FF 8300 2A 000000
04 FD C8 FF 8500 7C 1A 0000
04 FD C8 FF 860040020000
04 FD C8 FF 8700 3E 180000
04 FD D9 FF 810000000000
04 FD D9 FF 820000000000
04 FD D9 FF 830000000000
OA FF D9 150000
1F
C9 16
;Active tariff
;Current transformer primary current (status 15 ("not available") as B23 is a direct connected meter))
;Voltage transformer primary voltage
;Current transformer secondary current
;Voltage transformer secondary voltage
;Error flags
;Warning flags
;Information flags
;Alarm flags
;Firmware version
;Type designation
;Dif 1F means more telegrams exist
;Checksum and stop byte
;Mbus header
;Power fail counter
;Real power L1+L2+L3
;Real power L1
;Real power L2
;Real power L3
;Reactive power L1+L2+L3
;Reactive power L1
;Reactive power L2
;Reactive power L3
;Apparent power L1+L2+L3
;Apparent power L1
;Apparent power L2
;Apparent power L3
;Voltage L1-N
;Voltage L1-N
;Voltage L1-N
;Voltage L1-L2
;Voltage L2-L3
;Voltage L3-L1
;Apparent current, L1-N
;Apparent current, L2-N
;Apparent current, L3-N
;Measured frequency
;Dif 1F means more telegrams exist
;Checksum and stop byte

## MID energy meters Communication with M-Bus



Sending Request User Data 2 10 5B FE 5916

Reading telegram 4
68 DC DC 6808007234120000 2E 28200204200000 ;Mbus header
8140 FD 9A 0000
818040 FD 9A 0000
81 C0 40 FD 9B 0000
81808040 FD 9B 0000
C1 C0 40 FD 9B 0001
C1 808040 FD 9B 0000
8E 808040 FD E1 00000000000000
OE 84 FF F2 00000000000000
8E 4084 FF F2 00000000000000
8E 804084 FF F2 00000000000000
8E CO 4084 FF F2 00000000000000
04 FF F1 0000000000
8440 FF F1 0000000000
848040 FF F1 0000000000
84 C0 40 FF F1 0000000000
OE FF F9 C4 00000000000000
OE FF F9 C9 00000000000000
04 FF A4 00 E8 030000
04 FF A5 00 E8 030000
;Output 1 state
;Output 2 state
;Input 3 state
;Input 4 state
;Input 3 stored state
;Input 4 stored state
;Input 4 pulse counter
;Resettable real enery consumend*1
;Resettable real enery delive *1
;Resettable reactive energy consumend *1
;Resettable reactive energy delivered *1
;Reset counter for real enery consumend *1
;Reset counter for real enery delivered *1
;Reset counter for reactive energy consumend *1
;Reset counter for reactive energy delivered *1
;Real enery consumend in CO2
;Real enery consumend in currency
;Conversion factor for Real enery consumend in CO2
;Conversion factor for Real enery consumend in curreny
*1 (not available with B21, B23 and B24)

## MID energy meters Communication with M-Bus

8E 8080408400000000000000
8E CO 80408400000000000000
1F

3A 16

## Sending Request User Data 2

10 7B FE 7916

Reading telegram 5
68 F7 F7 6808007234120000 2E 28200205200000
0E 84 FF 8100000000000000
OE 84 FF 8200000000000000
OE 84 FF 8300000000000000
8E 4084 FF 8100000000000000
8E 4084 FF 8200000000000000
8E 4084 FF 8300000000000000
8E 804084 FF 8100000000000000
8E 804084 FF 8200000000000000
8E 804084 FF 8300000000000000
8E CO 4084 FF 8100000000000000
8E CO 4084 FF 8200000000000000
8E CO 4084 FF 8300000000000000
8E 80804084 FF 8100000000000000
8E 80804084 FF 8200000000000000
8E 80804084 FF 8300000000000000
8E CO 804084 FF 8100000000000000
8E CO 804084 FF 8200000000000000
8E CO 804084 FF 8300000000000000
1F
9216

## Sending Request User Data 2

10 5B FE 5916

Reading telegram 6
68 CE CE 6808007234120000 2E 28200206200000 8780 C0 4084000000000000000000

8780 C0 4084 FF 81000000000000000000
8780 CO 4084 FF 82000000000000000000
8780 CO 4084 FF 83000000000000000000
87 CO CO 4084000000000000000000
87 CO CO 4084 FF 81000000000000000000
87 CO CO 4084 FF 82000000000000000000
87 CO CO 4084 FF 83000000000000000000 878080804084000000000000000000 878080804084 FF 81000000000000000000 878080804084 FF 82000000000000000000 878080804084 FF 83000000000000000000 OF 7A 16
; Apparent energy L1+L2+L3 consumend
; Apparent energy $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3$ delivered ;Dif 1F means more telegrams exist
;Checksum and stop byte
;Mbus header
;Real energy L1, consumed ;Real energy L2, consumed ;Real energy L3, consumed ;Real energy L1, delivered ;Real energy L2, delivered ;Real energy L3, delivered ;Reactive energy L1, consumed ;Reactive energy L2, consumed ;Reactive energy L3, consumed ;Reactive energy L1, delivered ;Reactive energy L2, delivered ;Reactive energy L3, delivered ;Apparent energy L1, consumed ;Apparent energy L2, consumed ;Apparent energy L3, consumed ;Apparent energy L1, delivered ;Apparent energy L2, delivered ;Apparent energy L3, delivered ;Dif 1F means more telegrams exist ;Checksum and stop byte
;Mbus header
;Active net energy L1+L2+L3
;Active net energy L1
;Active net energy L2
;Active net energy L3
;Reactive net energy L1+L2+L3
;Reactive net energy L1
;Reactive net energy L2
;Reactive net energy L3
;Apparent net energy L1+L2+L3
;Apparent net energy L1
;Apparent net energy L2
;Apparent net energy L3
;Dif OF means last telegram
;Checksum and stop byte

## MID energy meters Communication with M-Bus

## Sending Request User Data 2 <br> 10 7B FE 7916

## Reading telegram 5

68 F7F7 68080072341200004204200205200000
0E 84 FF 8100000000000000 0E 84 FF 8200000000000000 OE 84 FF 8300000000000000 8E 4084 FF 8100000000000000 8E 4084 FF 8200000000000000 8E 4084 FF 8300000000000000 8E 804084 FF 8100000000000000 8E 804084 FF 8200000000000000 8E 804084 FF 8300000000000000 8E C0 4084 FF 8100000000000000 8E C0 4084 FF 8200000000000000 8E C0 4084 FF 8300000000000000 8E 80804084 FF 8100000000000000 8E 80804084 FF 8200000000000000 8E 80804084 FF 8300000000000000 8E C0 804084 FF 8100000000000000 8E C0 804084 FF 8200000000000000 8E C0 804084 FF 8300000000000000

Real energy L1, consumed Real energy L2, consumed Real energy L3, consumed Real energy L1, delivered Real energy L2, delivered Real energy L3, delivered Reactive energy L1, consumed Reactive energy L2, consumed Reactive energy L3, consumed Reactive energy L1, delivered Reactive energy L2, delivered Reactive energy L3, delivered Apparent energy L1, consumed Apparent energy L2, consumed Apparent energy L3, consumed Apparent energy L1, delivered Apparent energy L2, delivered Apparent energy L3, delivered
1F
8216

## Sending Request User Data 2

10 5B FE 5916

## Reading telegram 6

68 CE CE 68080072341200004204200206200000
8780 C0 4084000000000000000000 Active net energy $L 1+L 2+L 3$
8780 C0 4084 FF 81000000000000000000
8780 C0 4084 FF 82000000000000000000 8780 C0 4084 FF 83000000000000000000 87 CO C0 4084000000000000000000 87 C0 C0 4084 FF 81000000000000000000 87 C0 C0 4084 FF 82000000000000000000 87 C0 C0 4084 FF 83000000000000000000 878080804084000000000000000000 878080804084 FF 81000000000000000000 878080804084 FF 82000000000000000000 878080804084 FF 83000000000000000000 0F
6A 16

MID energy meters Communication with M-Bus

## MID energy meters <br> Communication with M-Bus

## B23/B24

## Read/write commands

The following tasks can be executed with the aid of the SND_UD telegram:
B 21

Command
Set tariff
Set primary address
Change baudrate
Reset power fail counter
Reset power outage time
Select Status information
Reset stored state input
Reset input counters
Set output
Set date time
Set date
Send Password
Freeze Max demand
Set communication access level
Read Request Load profile
Read request previous values
Read request demand (maximum and minimum
Read request Log (System, Event, quality, audit and Transformer Logs)
Read/W rite Alarm settings
ReadWrite Tariff settings

## MID energy meters <br> Communication with M-Bus

B 23/B 24
Command
Set tariff
Set primary address
Change baudrate
Reset power fail counter
Reset power outage time
Set CT Ratio numerator
Set CT Ratio denominator
Select Status information
Reset stored state input
Reset input counters
Set output
Send Password
Set communication access level
Read request Log (System, Event, quality, audit and Transformer Logs)
Read/W rite Alarm settings
Read/W rite Tariff settings

## MID energy meters Communication with M-Bus

### 5.1.1 Telegram format

The M-bus uses three different telegram formats. The formats are identified by the starting character.

Single Character	Short Frame	Long Frame
E5H	Start (10h)	Start (68h)
	C-Field	L-Field
	A-Field	L-Field
	Check Sum	Start (68h)
	Stop (16h)	C-Field
		A-Field
		CI-Field
		User Data (0...252 Bytes)
		Check Sum
		Stop (16h)

The single character format consists of a single character and is used for confirming the received telegrams.
The short telegram format is identified by its starting character (10h) and consists of five characters. In addition to the C and A field, it contains the checksum and the stop character 16 h .
The long telegram format is identified by its starting character ( 68 h ) and consists of a variable number of characters. After the starting character, the L field is transferred twice, and then the starting character again followed by the $\mathrm{C}, \mathrm{A}$ and CI field. The user data ( $0 . . .252$ Bytes) is transferred after the Cl field, followed by the checksum and the stop character (16h).

### 5.1.1.1 Field description

All fields in the telegram have the length of one Byte (8 Bits).

## The $L$ field

The $L$ field (length field) states the size of the user data (in Bytes) plus 3 (for the $\mathrm{C}, \mathrm{A}$ and CI field). This is transferred twice in the telegrams if the long telegram format is used.

## The C field

The C field (control field) contains information about the direction of the data flow and the error handling. In addition to the identification of the functions and the actions caused by it, the control field also specifies the flow direction of the data and is responsible for numerous parts of the incoming and outgoing communication of the meter.
The following table contains coding of the C field:

Bit no.	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
To the meter	0	PRM	FCB	FCV	F3	F2	F1	F0
From the   meter	0	PRM	0	0	F3	F2	F1	F0

## MID energy meters Communication with M-Bus

The Primary Message Bit (PRM) specifies the flow direction of the data. This value is set to 1 for telegrams from the master to the meter, and to 0 for the opposite direction.

The Frame Count Valid Bit ( $\mathbf{F C V}$ ) is set to 1 by the master, to show that the Frame Count Bit ( $\mathbf{F C B}$ ) is used. If FCV is set to 0 then the meter ignores the FCB.

The FCB is used for the display of correct transfer processes. The master switches the Bit after successful receipt of a response from the meter. If the anticipated response fails to appear or is not received correctly then the master sends the same telegram again with the same FCB. The meter responds to a REQ_UD2 request with a switched FCB and set FCV with a RSP_UD, which contains the next telegram of a multi-telegram message. If the FCB is not switched then the meter repeats the last telegram instead. The actual values are repeated in a repeated telegram.

Upon receipt of an SND_NKE, the meter resets the FCB. The meter uses the same FCB for primary and secondary addressing, and for point-to-point communication.

The Bits 0 to 3 (F0, F1, F2 and F3) of the control field form the function code of the message. The following table contains the function codes:

Command	C field (binary)	C field (hex)	Telegram	Description
SND_NKE	01000000	40	Short frame	Meter initialisation
SND_UD	01 F1 0011	$53 / 73$	Long frame	Send user data to meter
REQ_UD2	01 F1 1011	$5 b$	Short frame	Request for class 2-data
RSP_UD	00001000	08	Long frame	Data transfer from meter to master after   request.

## A field

The A field (address field) is used for addressing the recipient in the invoke direction, and for identifying the sender of the data in the receipt direction. This field is one Byte in size and can therefore contain values from 0 to 255 .

The following table shows the address assignment:

Address	Description
0	Standard ex works
$1 \ldots 250$	Can be assigned as individual primary addresses to meters, either by   bus (secondary addressing) or directly via the buttons on the meter.
$251 \ldots 252$	Reserved for future use.
253	Used by the secondary addressing procedure (FDh).
254	Used for point-to-point communication (FEh). The meter responds with   its primary address.
255	Used for broadcast transfers to all meters (FFh). No meter responds to   broadcast messages.

## MID energy meters <br> Communication with M-Bus

## Cl field

The Cl field (control information) contains coding of the type and sequence of the application data to be transferred in the frame. The second Bit of the Cl field (starting from Bit 0 , value 4) is also referred to as the M-Bit or Mode Bit and supplies information about the Byte sequence used in data structures with multiple Bytes. For communication with the meter, the Mode Bit is not set (Mode 1). This means that the lowest value Bit of a multi-Byte transfer is transferred first.

The following table shows the codes used by the master:

CI field codes	Application
51 h	Send data
52 h	Slave selection
B8h	Set Baud rate to 300
B9h	Set Baud rate to 600
Bah	Set Baud rate to 1200
BBh	Set Baud rate to 2400
BCh	Set Baud rate to 4800
BDh	Set Baud rate to 9600
BEh	Set Baud rate to 19200
BFh	Set Baud rate to 38400

The meter uses code 72 in the Cl field to respond to requests for user data.

## User data

The user data contains the data that is sent to the recipient.
The following table shows the structure of the data sent from the meter to the master:

Fixed data header	Data entries	MDH
12 Bytes	Variable number of Bytes	1 Byte

The following table shows the structure of the data sent from the master to the meters:
$\qquad$
Variable number of Bytes

## MID energy meters Communication with M-Bus

## Fixed data header

The following table shows the structure of a fixed data header:

ID no.	Manufacturer	Version	Medium	Access no.	Status	Signature
4 Byte	2 Byte	1 Byte	1 Byte	1 Byte	1 Byte	2 Byte

The following table describes the contents of the fixed data header:

- Identification no. is the 8 -digit serial number of the meter (BCD-coded).
- Manufacturer has the value 2E 28 and stands for J anitza (JAN).
- Version is the version of the protocol implementation. The meters currently use the protocol version $0 \times 20$.
- Medium has the value 02 h and stands for electricity.
- Access number is a meter for successful accesses.
- Status Byte gives the status of the meter.

Bit	Meaning
0	Meter busy
1	Internal error
2	Low energy level
3	Permanent error
4	Temporary error
5	Installation error
6	Not used
7	Not used

- Signature has the value 0000 h


## MID energy meters Communication with M-Bus

## Data entries

The actual data is transferred in data entries together with information on the coding, length and type of data. The maximum length of a data entry is 240 Bytes.

The following table shows the structure of the data entry (transferred from left to right):

Data entry header		Data			
Data Information Block (DIB)			Value Information Block (VIB)		
DIF	DIFE	VIF	VIFE		
1 Byte	$0 \ldots 10$ Byte	1 Byte	$0 \ldots 10$ Byte	$0 \ldots$ n Byte	

Each data entry consists of the header (DRH) and the actual data. The DRH in turn comprises the Data Information Block (DIB) for describing the length, type and coding of the data and the Value Information Block (VIB), which contains the value of the unit and the multiplier.

## Data Information Block (DIB)

The DIB contains at least one Byte (Data Information Field DIF) and is sometimes expanded by up to 10 DIFEs (Data Information Field Extension).

The following table shows the structure of the Data Information Field (DIF):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Extension Bit	LSB* of storage no.	Function field		Data field			

* Lowest value Bit

The following list describes the contents of the DIF:

- The extension Bit is set if the next Byte is a DIFE.
- The LSB of the storage no. is normally set to 0 , in order to quote the actual value. ( $1=$ stored value).
- The function field is set to 00 for immediate values, to 01 for maximum values and to 10 for minimum values.
- The data field provides the format of the data. The following table contains the coding of the data field:

Code	Meaning	Length
0000	No data	0
0001	8-Bit whole number	1
0010	16-Bit whole number	2
0100	32-Bit whole number	4
0111	64-Bit whole number	8
1010	4-digit BCD	2
1111	6-digit BCD	3
1100	8-digit BCD	4
1101	Variable length (ASCII)	Variable
1110	12-digit BCD	6

The following table shows the structure of the Data Information Field Extension (DIFE):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Extension Bit	Unit	Tariff	Storage no.				

## MID energy meters Communication with M-Bus

The following list describes the contents of the DIFE:

- Unit shows the respective type of current or energy for current and energy values. This field also contains the number of inputs and outputs and an offset when accessing data of the event log.
- Tariff is used with energy values to specify tariff data.
- Storage number is set to 0 , to specify momentary values. A storage number greater than 0 indicates previously stored values, which were saved at a certain point in the past.


## Value Information Block (VIB)

VIB follows a DIF or DIFE without extension Bit. The VIB contains an information field (VIF) and is sometimes extended by up to 10 Value Information Field Extensions (VIFE).
The following table shows the structure of the Value Information Field (VIF):

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1
Extension Bit	Data values	Bit 0				

The data values contain information on the value (unit, status, etc.). The extension Bit is set if the next Byte is a VIFE. If VIF or VIFE $=$ FFh, then the next VIFE is manufacturer-specific. The manufacturer-specific VIFE has the same structure as a VIF. If the extension Bit of the manufacturer-specific VIFE is set and the VIFE is lower than 1111 1000, the next Byte is a standard VIFE, otherwise it is the first data Byte. If the extension Bit of the manufacturer-specific VIFE is set and the VIFE is greater than or equal to 1111 1000, the next Byte is an extension of the manufacturerspecific VIFE.

## Data

The data follows a VIF or VIFE without set extension Bit.

## Manufacturer Data Header (MDH)

The Manufacturer Data Header (MDH) either consists of the combination 1Fh to specify that the further data follows in the next Bit, or OFh to signal the last telegram.

## Checksum

The checksum is used to recognise transfer and synchronisation errors. It is calculated from the arithmetic sum total of the Bytes from the control field to the last user data, without taking carry-overs into consideration.

## MID energy meters <br> Communication with M-Bus

### 5.1.2 Field codes for value information

### 5.1.2.1 Standard VIF codes

VIF code	Description	Coding range	Range
E000 0nnn	Energy	$10\left(^{(\mathrm{nn}-3}\right) \mathrm{Wh}$	0.001 Wh to $10,000 \mathrm{~Wh}$
E010 1nnn	Current	$10\left(^{(\mathrm{nn}-3}\right) \mathrm{W}$	0.001 W to $10,000 \mathrm{~W}$
E1111010	Bus address		$0 . . .250$
E1111000	Manufacturer number		00000000 to 99999999
11111011	Extension of VIF codes		The used in the meter   VIFE and coded per table-FD
11111101	Extension of VIF codes		Next VIFE is manufacturer-specific
11111111	Manufacturer-specific		

## MID energy meters Communication with M-Bus

### 5.1.2.2 Standard codes for VIFE with connection indicator FDh

If the VIF contains the connection indicator FDh, the actual VIF is coded in the first VIFE.

VIF code	Description
E000 1010	Manufacturer
E000 1100	Version
E000 1110	Firmware version
E001 1010	Digital output (binary)
E001 1011	Digital input (binary)
E001 1100	Baud rate
E100 nnnn	$10\left(^{\text {nnnn-9) Volt }}\right.$
E101 nnnn	$10\left(^{\text {nnnn-12) A }}\right.$
E110 0001	Total meter
E001 0110	Password

### 5.1.2.3 Standard codes for VIFE

The following values for VIFEs are defined for extensions of VIFs with the exception of FDh and FBh:

VIF code	Description
E010 0111	Per measurement (interval) ${ }^{12}$
E011 1001	Start date(/time) from
E110 1f1b	Date(/time) from, $b=0:$ End from, $b=1:$ Start from, $f$ is not used in meters, always $0^{12}$
11111111	Next VIFE is manufacturer-specific

1. Date (/time) from "or duration from" pertains to information that contains the entire data entry.
2. The information, as to whether data type $F$ (date and time) or data type $G$ (date) was used, can be read off from the data field (0010b: type G/0100: type F).

## MID energy meters <br> Communication with M-Bus

### 5.1.2.4 First manufacturer-specific VIFE codes

B21

VIF code	Description
E000 0000	Total
E000 0001	L1
E000 0100	N
E001 0000	Pulse frequency
E001 0011	Tariff
E001 0100	Installation check
E001 0101	Status of values
E001 0111	Active quadrant
E001 1000	Power failure meter
E010 0000	Current transformer conversion ratio meter (CT ratio)
E010 0010	Current transformer conversion ratio denominator (CT ratio)
E010 0101	Currency conversion factor (curr. * 10-3 /kW h)
E010 0110	Error flags
E010 0111	Warning flags
E010 1000	Information flags
E010 1001	Alarm flags
E100 0nnn	Phase angle voltage (degrees *10 (nnn-3)
E100 1nnn	Phase angle current (degrees *10 (nnn-3)
E101 0nnn	Phase angle energy (degrees *10 (nnn-3)
E101 1nnn	Frequency (Hz *10 (nnn-3)
E110 0nnn	Power factor (*10 (nnn-3)
E110 1010	Change level of write access
E110 1100	Power failure time duration
E110 1111	Event type
E111 0000	Measurement period
E111 0001	Reset energy meter *1
E111 0010	Resettable register
E111 0110	Sequence number (audit log)
E111 1000	Extension of manufacturer-specific VIFEs, next VIFE(s) are used for numbering
E111 1001	specific error/status messages
E111 1110	

*1 (not available with B21, B23 and B24)

## MID energy meters <br> Communication with M-Bus

VIF code	Description
E000 0000	Total
E000 0001	L1
E000 0010	L2
E000 0011	L3
E000 0100	N
E000 0101	L1-L2
E000 0110	L3-L2
E000 0111	L1-L3
E001 0000	Pulse frequency
E001 0011	Tariff
E001 0100	Installation check
E001 0101	Status of values
E001 0111	Active quadrant
E001 1000	Power failure meter
E010 0000	Current transformer conversion ratio meter (CT ratio)
E010 0010	Current transformer conversion ratio denominator (CT ratio)
E010 0100	CO 2 conversion factor ( $\mathrm{kg} * 10^{-3} / \mathrm{kWh}$ )
E010 0101	Currency conversion factor (curr. * $10^{-3} / \mathrm{kW} \mathrm{h}$ )
E010 0110	E rror flags
E010 0111	W arning flags
E010 1000	Information flags
E010 1001	Alarm flags
E100 0nnn	Phase angle voltage (degrees *10 ${ }^{(n n n-3)}$ )
E 100 1nnn	Phase angle current (degrees *10 ${ }^{\left({ }^{(n n-3)} \text { ) }\right.}$
E 101 0nnn	Phase angle energy (degrees *10 ${ }^{(n n n-3)}$ )
E101 1nnn	Frequency ( $\mathrm{Hz} * 10{ }^{(n n n-3)}$ )
E110 0nnn	Power factor (*10 ${ }^{(n n n-3)}$ )
E110 1010	Change level of write access
E110 1111	Event type
E111 0001	Reset energy meter
E1110010	Resettable register
E1110110	Sequence number (audit log)
E111 1000	Extension of manufacturer-specific VIFEs, next VIFE(s) are used for numbering
E111 1001	Extension of manufacturer-specific VIFEs, next VIFE(s) give actual meaning
E111 1110	Extension of manufacturer-specific VIFEs, next VIFE(s) are used for manufacturerspecific error/status messages

## MID energy meters <br> Communication with M-Bus

### 5.1.2.5 VIFE codes for error messages (meter to master)

VIF code	Description	Error group
E000 0000	None	
E001 0101	No data available (undefined value)	
E001 1000	Data error	Data error

### 5.1.2.6 VIFE codes for object actions (master to meter)

B 21

VIF code	Action	Description
E000 0111	Delete	Set data to zero
E000 1011	Freeze data	Freeze data in storage number

B 23/B 24

VIF code	Action	Description
E000 0111	Delete	Set data to zero

### 5.1.2.7 2nd manufacturer-specific VIFE after VIFE 11111000 (F8 hex):

VIF code	Description
Ennn nnnn	Used for numbering (0...127)

### 5.1.2.8 2nd manufacturer-specific VIFE after VIFE 11111001 (F9 hex):

VIF code	Description
E000 0110	Quantity specification in event log
E000 0110	Tariff source
E001 1010	Request to read out the event log
E010 1110	System log
E010 1111	Audit log
E011 0000	Power quality log
E011 0010	Event log
E011 0011	Event type system log
E011 0100	Event type audit log
E011 0101	Event type power quality log
E011 0111	Event type event log
E011 0nnn	Energy in CO2 (kg *10nnn-7)
E011 1nnn	Energy in currency (currency *10nnn-3)

## MID energy meters Communication with M-Bus

### 5.1.3 Communication process

The data linking level uses two types of transfer service:

Send/Confirm	SND/CON
Request/Respond	REQ/RSP

If a meter receives a correct telegram then it waits between 35 and 80 ms before it responds. A telegram is deemed to be correct if it passes the following tests:

- $\quad$ Start/parity/stop Bits per character
- Start/checksum/stop characters per telegram format
- In case of a long frame, the number of additional characters received must reflect the $L$ field ( $=L$-field +6 ).
- The received data must make sense

The interval between a response from the meter and a new message from the master must be at least 20 ms .

## Send / confirmation procedure

SND_NKE is used to initiate communication with the meter. If the meter receives an NKE followed by a REQ_UD2 (see description below) then the first telegram is sent by the meter.
If the meter has been selected for secondary addressing then the selection is rescinded. The value of the FCB is reset in the meter, i.e. the meter expects that the first telegram from a master with $\mathrm{FCV}=1$ contains an $\mathrm{FCB}=1$.
The meter can either confirm the correct receipt with the simple character $E 5 h$ ) or omit confirmation if the telegram was not received correctly.
SND_UD is used to send data to the meter. The meter can either confirm receipt of a correct message or omit confirmation if the telegram was not received correctly.

## Request / response procedure

REQ_UD2 is used by the master to request data from the meter.
REQ_UD2 is used by the meter to transfer data to the master. The meter can send 1Fh as the last user data, in order to specify to the master that further data will follow in the next telegram.
If the meter does not respond to the REQ_UD2 then this means that the message was not received correctly or that the address did not match.

## MID energy meters Communication with M-Bus

### 5.1.3.1 Selection and secondary addressing

Communication with the meter can take place via secondary addressing.
Secondary addressing takes place with the aid of a selection:


1st generation has the same meaning as version.
The master sends an SND_UD with the control information 52 h to the address 253 (FDh) and fills in the meterspecific secondary address fields (identification number, manufacturer, version and medium) with the values of the meter to be addressed. The address information (FDh) and control information (52h) instruct the meter to compare the following secondary addressing with its own address and change to the status "selected" in case of a match. In this case, the meter responds to the selection with a (E5h), otherwise no response is issued. The status "selected" means that the meter can be addressed via the bus address 253 (FDh).

## Placeholders

During the selection, individual positions of the secondary addresses can be occupied by placeholder characters. These placeholder characters mean that the respective position is not considered during selection. Each individual digit of the identification number can be replaced with the placeholder half-Byte Fh. In contrast, the fields for the manufacturer, version and medium can be replaced with the placeholder Byte FFh. The meter remains in the status "selected" until it receives a selection command with non-matching secondary address, a selection command with $\mathrm{CI}=56 \mathrm{~h}$ or an SND_NKE to address 253.

## MID energy meters Communication with M-Bus

### 5.2 Standard readout of meter data

This section contains a description of how the standard telegrams can be read out. The data read-out starts when the master sends a REQ_UD2 telegram to the meters. The meter responds with a RSP_UD telegram. A typical response consists of multiple telegrams. The last DIF in the user data part either contains the value $1 F$ to specify that the further data follows in the next telegram, or 0 F if no further telegrams follow.

The meters recognise a total of 7 standard telegrams. In meters with an internal clock, further telegrams with previous data values may follow. The newest values are sent first and bear the storage number 1 , followed by the next newest values with the storage number 2, etc., until all stored previous values have been read. If a meter with internal clock contains no previous values then it sends a telegram in which all data is marked with the status Byte "no data available".

Previous values can also be read with the help of a special read request from a certain time point in the direction of the past.

> Note
> The meters send energy values as standard as 32 -Bit whole numbers in W (or Var/VA) with 2 decimal places. The maximum energy that can be depicted is therefore approx. $\pm 21 \mathrm{MW}$.

After the following sections, you will find an example of the 7 standard telegrams and 2 telegrams with previous values, which contain the latest extract of the previous values. However, these are only examples. The data type and scaling of quantities vary between the different meters, likewise the assignment of the quantities to various telegrams.

### 5.2.1 Example for telegrams 1 to 4 with $\mathbf{B 2 1}$ (all values are hexadecimal)

Telegram 1

68	Start char		
BC	Length		
BC	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number	00001234	
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
01	Access number		
00	Status		
0000	Signature		
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
980200000000	Data	2.98 kWh	Comments: No DIFE -> Tariff 0, Unit 0 -> Total Active Energy Import
8 E	DIF	Data is 12 digit BCD	
10	DIFE	Tariff 1	
84	VIF	Energy with 2 decimals	

## MID energy meters <br> Communication with M-Bus

00	VIFE	Status: No error	
450100000000	Data	1.45 kWh	Comments: Tariff 1 and unit 0 in DIFE -> Tariff 1 Active Energy Import
8E	DIF	Data is 12 digit BCD	
20	DIFE	Tariff 2	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
530100000000	Data		
8E	DIF	Data is 12 digit BCD	
40	DIFE	Export	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
980100000000	Data	1.98 kWh	Comments: Tariff 0, Unit 1 in DIFE ->Total Active Energy Export
8E	DIF	Data is 12 digit BCD	
50	DIFE	Tariff 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
840000000000	Data	0.84 kWh	
8E	DIF	Data is 12 digit BCD	
60	DIFE	Tariff 2	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
130100000000	Data	1.13 kWh	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
93	VIFE	Active tariff	
00	VIFE	Status: No error	
01	Data	Active tariff is 1	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A0	VIFE	CT numerator (primary current marking of CT)	
15	VIFE	Status: No data available	
00000000	Data		Comments: On direct connected VT's or CT's are not used and marked as "Not available"
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A1	VIFE	VT numerator (primary voltage marking of VT)	
15	VIFE	Status: No data available	
00000000	Data		
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A2	VIFE	CT denominator (secondary current marking of CT)	

## MID energy meters

15	VIFE	Status: No data available	
00000000	Data		
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A3	VIFE	VT denominator (secondary voltage marking of VT)	
15	VIFE	Status: No data available	
00000000	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A6	VIFE	Error flags	
00	VIFE	Status: No error	
$\begin{array}{\|l\|} \hline 000000000000 \\ 0000 \\ \hline \end{array}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A7	VIFE	Warning flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \\ & \hline \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A8	VIFE	Information flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A9	VIFE	Alarm flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
OD	DIF	Variable length of ASCII data	
FD	VIF	Extension of VIF-codes	
8E	VIFE	Firmware version	
00	VIFE	Status: No error	
$\begin{aligned} & 0730 \text { 2E } 38 \text { 2E } 30 \\ & 3142 \end{aligned}$	Data	7 ASCII bytes containing "B10.8.0"	
OD	DIF	Variable length of data	
FF	VIF	Next byte is manufacturer specific	
AA	VIFE	Type designation	
00	VIFE	Status: No error	
$\begin{array}{\|l\|} \hline \text { OB 4A } 3031 \text { 2D } 33 \\ 313320313242 \end{array}$	Data	11 ASCII bytes containing "B21 31310J"	
1F	DIF	More data in next telegram	
F4	Checksum		
16	End		

## MID energy meters

Telegram 2

68	Start char		
A4	Length		
A4	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number		
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
02	Access number		
00	Status		
0000	Signature		
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
98	VIFE	Power fail counter	
00	VIFE	Status: No error	
7A 000000	Data	122	
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
8D 2A 0400	Data	2730.37 kW	$\begin{aligned} & \hline \text { Comments: No VIFE for phase } \\ & \text { number, No DIFE gives Unit } 0 \text {-> } \\ & \text { Total Active Power } \\ & \hline \end{aligned}$
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
AC 690200	Data	1581.24 kvar	Comments: No VIFE for phase number, Unit 2 -> Total Reactive Power
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
52 CA 0400	Data	3139.38 kVA	Comments: No VIFE for phase number, Unit 4 -> Total Apparent Power
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	

## MID energy meters

FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
FD 080000	Data	230.6 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
D9	VIFE	Ampere with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
33350000	Data	13.619 A	
OA	DIF	Data is 4 digit BCD	
FF	VIF	Next byte is manufacturer specific	
D9	VIFE	Frequency with 2 decimals	
00	VIFE	Status: No error	
8949	Data	49.89 Hz	
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
EO	VIFE	Power factor with 3 decimals	
00	VIFE	Status: No error	
6603	Data	0.87	Comments: No VIFE for phase number -> Total Power Factor
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
D2	VIFE	Power factor angle with 1 decimal	
00	VIFE	Status: No error	
2801	Data	$29.6{ }^{\circ}$	Comments: No VIFE for phase   number -> Total Power Factor Angle
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
00	VIFE	Status: No error	
01	Data	1	Comments: No VIFE for phase number -> Total Active Quadrant
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
370100000000	Data	1.37 kvarh	Comments: Tariff 0, Unit 2 -> Total Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
90	DIFE	Tariff 1, Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	

## MID energy meters

160000000000	Data	0.16 kvarh	Comments: Tariff 1 and unit 2 in DIFE -> Tariff 1 Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
A0	DIFE	Tariff 2, Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
210100000000	Data	1.21 kvarh	Comments: Tariff 2 and unit 2 in DIFE -> Tariff 2 Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
CO	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
050200000000	Data	2.05 kvarh	Comments: Tariff 0, Unit 2 -> Total Reactive Energy Export
8E	DIF	Data is 12 digit BCD	
D0	DIFE	Tariff 1, Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
600000000000	Data	0.60 kvarh	Comments: Tariff 1 and unit 2 in DIFE -> Tariff 1 Reactive Energy Export
8E	DIF	Data is 12 digit BCD	
E0	DIFE	Tariff 2, Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
440100000000	Data	1.44 kvarh	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
AD	VIFE	Number of elements	
00	VIFE	Status: No error	
03	Data	3	
1F	DIF	More data in next telegram	
E1	Checksum		
16	End		

## MID energy meters

Telegram 3

68	Start char		
48	Length		
48	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number		
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
02	Access number		
00	Status		
0000	Signature		
81	DIF	Data is 8 bit integer	
40	DIFE	Unit bit $0=1$	
FD	VIF	Extension of VIF-codes	
9A	VIFE	Digital output	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 1 -> Output number 1
81	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
FD	VIF	Extension of VIF-codes	
9A	VIFE	Digital output	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 2 -> Output number 2
81	DIF	Data is 8 bit integer	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 3 -> Input number 3
81	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	

## MID energy meters

00	Data	0	Comments: Unit 4 -> Input number 4
C1	DIF	Data is 8 bit integer	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
FD	VIF	Extension of VIF-codes	
9 B	VIFE	Digital input	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 3, storage bit $0=1$ in DIF -> Input number 3 stored state
C1	DIF	Data is 8 bit integer	
80	DIFE	Unit bit 0 = 0	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 4, storage bit $0=1$ in DIF -> Input number 4 stored state
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
FD	VIF	Extension of VIF-codes	
E1	VIFE	Cumulation counter	
00	VIFE	Status: No error	
020000000000	Data	2	Comments: Unit 4 -> Input number 4 pulse counter
1F	DIF	More data in next telegram	
9 E	Checksum		
16	End		

Telegramm 4

68	Start char		
CF	Length		
CF	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data   respond		
34120000	Serial number		
$2 E 28$	Manufacturer	JAN	
20	Version		

## MID energy meters

02	Medium	Electricity	
02	Access number		
00	Status		
0000	Signature		
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
120000000000	Data	0.12 kWh	Comments: No DIFE -> Unit 0 -> Resettable Active Energy Import
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
520000000000	Data	0.52 kWh	Comments: Unit 1 -> Resettable Active Energy Export
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
140000000000	Data	0.14 kvarh	Comments: Unit 2 -> Resettable Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
CO	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
310000000000	Data	0.31 kvarh	Comments: Unit 3 -> Resettable Reactive Energy Export
04	DIF	Data is 32 bit integer	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
03000000	Data	3	Comments: No DIFE gives Unit 0 -> Active Energy Import Reset Counter
84	DIF	Data is 32 bit integer	
40	DIFE	Unit bit $0=1$	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	

## MID energy meters

00	VIFE	Status: No error	
01000000	Data	1	Comments: Unit 1 -> Active Energy Export Reset Counter
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
02000000	Data	2	Comments: Unit 2 -> Reactive Energy Import Reset Counter
84	DIF	Data is 32 bit integer	
CO	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
01000000	Data		Comments: Unit 3 -> Reactive Energy Export Reset Counter
OE	DIF	Data is 12 digit BCD	
FF	VIF	Next byte is manufacturer specific	
F9	VIFE	VIF extension of manufacturer specific VIFE	
C4	VIFE	Active Energy in CO2	
00	VIFE	Status: No error	
922900000000	Data	2.992 kg	
OE	DIF	Data is 12 digit BCD	
FF	VIF	Next byte is manufacturer specific	
F9	VIFE	VIF extension of manufacturer specific VIFE	
C9	VIFE	Active Energy in Currency	
00	VIFE	Status: No error	
000300000000	Data	3.00	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A4	VIFE	Conversion factor for active energy import in CO2	
00	VIFE	Status: No error	
E8 030000	Data	1000	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A5	VIFE	Conversion factor for active energy import in Currency	
00	VIFE	Status: No error	
E8 030000	Data	1000	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	

## MID energy meters

40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
670300000000	Data	3.67 kVAh	Comments: No DIFE -> Tariff 0, Unit 4 -> Total Apparent Energy Import
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
690200000000	Data	2.69 kVAh	Comments: No DIFE -> Tariff 0, Unit 5-> Total Apparent Energy Export
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
$\begin{aligned} & 64000000000000 \\ & 00 \\ & \hline \end{aligned}$	Data	1.00 kWh	Comments: Tariff 0, Unit 6 -> Total Active Energy Net
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit $0=1$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
$\qquad$ FF	Data	-0.67 kvarh	Comments: Tariff 0, Unit 7 -> Total Reactive Energy Net
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
$\begin{aligned} & 61000000000000 \\ & 00 \end{aligned}$	Data	0.97 kVAh	Comments: Tariff 0, Unit 8 -> Total Apparent Energy Net
OF	DIF	Last telegram	
A6	Checksum		
16	End		

## MID energy meters

### 5.2.2 Example for telegrams 1 to 6 with B23 (all values are hexadecimal)

Telegram 1

68	Start char		
BC	Length		
BC	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number	00001234	
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
1F	Access number		
00	Status		
0000	Signature		
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
240100000000	Data	1.24 kWh	Comments: No DIFE -> Tariff 0, Unit 0 -> Total Active Energy Import
8E	DIF	Data is 12 digit BCD	
10	DIFE	Tariff 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
090100000000	Data	1.09 kWh	Comments: Tariff 1 and unit 0 in DIFE -> Tariff 1 Active Energy Import
8E	DIF	Data is 12 digit BCD	
20	DIFE	Tariff 2	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
140000000000	Data	0.14 kWh	
8E	DIF	Data is 12 digit BCD	
40	DIFE	Export	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
710000000000	Data	0.71 kWh	Comments: Tariff 0, Unit 1 in DIFE >Total Active Energy Export
8E	DIF	Data is 12 digit BCD	
50	DIFE	Tariff 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
510000000000	Data	0.51 kWh	

## MID energy meters

8E	DIF	Data is 12 digit BCD	
60	DIFE	Tariff 2	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
200000000000	Data	0.21 kWh	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
93	VIFE	Active tariff	
00	VIFE	Status: No error	
02	Data	Active tariff is 2	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A0	VIFE	CT numerator (primary current marking of CT)	
15	VIFE	Status: No data available	
00000000	Data		Comments: B23 does not support VT's or CT's and CT and VT settings are therefore marked as "Not available"
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A1	VIFE	VT numerator (primary voltage marking of VT)	
15	VIFE	Status: No data available	
00000000	Data		
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A2	VIFE	CT denominator (secondary current marking of CT)	
15	VIFE	Status: No data available	
00000000	Data		
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A3	VIFE	VT denominator (secondary voltage marking of VT)	
15	VIFE	Status: No data available	
00000000	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A6	VIFE	Error flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \\ & \hline \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A7	VIFE	Warning flags	

## MID energy meters

00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A8	VIFE	Information flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A9	VIFE	Alarm flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
OD	DIF	Variable length of ASCII data	
FD	VIF	Extension of VIF-codes	
8E	VIFE	Firmware version	
00	VIFE	Status: No error	
$\begin{aligned} & 07302 E 3432 \text { 2E } 31 \\ & 42 \end{aligned}$	Data	7 ASCII bytes containing "B1.24.0"	
OD	DIF	Variable length of data	
FF	VIF	Next byte is manufacturer specific	
AA	VIFE	Type designation	
00	VIFE	Status: No error	
$\begin{array}{\|l\|} \hline \text { OB 4A } 30312 D 33 \\ 313320333242 \\ \hline \end{array}$	Data	11 ASCII bytes containing "B23 31310J"	
1 F	DIF	More data in next telegram	
D3	Checksum		
16	End		

## MID energy meters

Telegram 2

68	Start char		
F2	Length		
F2	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number		
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
20	Access number		
00	Status		
0000	Signature		
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
98	VIFE	Power fail counter	
00	VIFE	Status: No error	
OD 000000	Data	13	
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
9D 2E 1000	Data	10605.09 W	Comments: No VIFE for phase number, No DIFE gives Unit 0 -> Total Active Power
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
61680500	Data	3544.01 W	Comments: VIFE for phase number, No DIFE gives Unit 0 -> Active Power L1
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
98650500	Data	3536.88 W	
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	

## MID energy meters

83	VIFE	L3	
00	VIFE	Status: No error	
A5 600500	Data	3524.21 W	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
D6 4D F2 FF	Data	-8975.78 var	Comments: No VIFE for phase number, Unit 2 -> Total Reactive Power
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
C0 6C FB FF	Data	-2998.40 var	Comments: VIFE for phase number, Unit 2 -> Reactive Power L1
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
7471 FB FF	Data	-2986.36 var	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
A3 6F FB FF	Data	-2991.01 var	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
C4 OC 1500	Data	13795.24 VA	Comments: No VIFE for phase number, Unit 4 -> Total Apparent Power

## MID energy meters

84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
83080700	Data	4609,31 VA	Comments: VIFE for phase number, Unit 4 -> Apparent Power L1
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
68030700	Data	4596.24 VA	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
DA 000700	Data	4589.70 VA	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
07090000	Data	231.1 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
00090000	Data	230.4 V	
04	DIF	Data is 32 bit integer	

## MID energy meters

FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
FC 080000	Data	230.0 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
85	VIFE	L1-L2	
00	VIFE	Status: No error	
9E OF 0000	Data	399.8 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
86	VIFE	L3-L2	
00	VIFE	Status: No error	
A3 OF 0000	Data	400.3 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
87	VIFE	L1-L3	
00	VIFE	Status: No error	
A6 0 F 0000	Data	400.6 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
D9	VIFE	Ampere with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
EB 4D 0000	Data	19.947 A	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
D9	VIFE	Ampere with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
EE 4D 0000	Data	19.950 A	
04	DIF	Data is 32 bit integer	

## MID energy meters

FD	VIF	Extension of VIF-codes	
D9	VIFE	Ampere with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
F9 4D 00 00	Data	19.961 A	
OA	DIF	Data is 4 digit BCD	
FF	VIF	Next byte is manufacturer specific	
D9	VIFE	Frequency with 2 decimals	
00	VIFE	Status: No error	
9849	Data	49.98 Hz	
$1 F$	DIF	More data in next telegram	
EE	Checksum		

Telegram 3

68	Start char		
95	Length		
95	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data   respond		
34120000	Serial number		
$2 E 28$	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
21	Status		
00	Signature		
0000	DIF	Data is 16 bit integer	
02	VIF	Next byte is manufacturer specific	
FF	VIFE	Power factor with 3 decimals	
EO	VIFE	Status: No error	
00	Data	0.769	Comments: No VIFE for phase   number $>$ P Total Power Factor
0103	DIF	Data is 16 bit integer	
V2	VIF	Next byte is manufacturer specific	
FF	VIFE	Nower factor with 3 decimals	
FF	VIFE	L1	
81			

## MID energy meters

00	VIFE	Status: No error	
0203	Data	0.770	Comments: VIFE for phase number > Power Factor L1
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
EO	VIFE	Power factor with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
0203	Data	0.770	
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
EO	VIFE	Power factor with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
0103	Data	0.769	
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
D2	VIFE	Power factor angle with 1 decimal	
00	VIFE	Status: No error	
73 FE	Data	-39.7 ${ }^{\circ}$	Comments: No VIFE for phase number -> Total Power Factor Angle
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
420000000000	Data	0.42 kvarh	Comments: Tariff 0, Unit 2 -> Total Reactive Energy Import
8 E	DIF	Data is 12 digit BCD	
90	DIFE	Tariff 1, Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
370000000000	Data	0.37 kvarh	Comments: Tariff 1 and unit 2 in DIFE -> Tariff 1 Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
20	DIFE	Tariff 2, Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
050000000000	Data	0.05 kvarh	
8 E	DIF	Data is 12 digit BCD	

## MID energy meters

CO	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
220100000000	Data	1.22 kvarh	Comments: Tariff 0, Unit 2 -> Total Reactive Energy Export
8E	DIF	Data is 12 digit BCD	
D0	DIFE	Tariff 1, Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
980000000000	Data	0.98 kvarh	Comments: Tariff 1 and unit 2 in DIFE -> Tariff 1 Reactive Energy Export
8E	DIF	Data is 12 digit BCD	
E0	DIFE	Tariff 2, Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
240000000000	Data	0.24 kvarh	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
AD	VIFE	Number of elements	
00	VIFE	Status: No error	
03	Data	3	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
00	VIFE	Status: No error	
04	Data	4	Comments: No VIFE for phase number -> Total Active Quadrant
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
04	Data	4	Comments: VIFE for phase number   > Active Quadrant L1
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	

## MID energy meters

04	Data	4	Comments: VIFE for phase number -   $>$ Active Quadrant L2
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
04	Data	4	Comments: VIFE for phase number -   $>$
1F Active Quadrant L3			

Telegram 4

68	Start char		
DC	Length		
DC	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number		
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
22	Access number		
00	Status		
0000	Signature		
81	DIF	Data is 8 bit integer	
40	DIFE	Unit bit $0=1$	
FD	VIF	Extension of VIF-codes	
9A	VIFE	Digital output	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 1 -> Output number 1
81	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
FD	VIF	Extension of VIF-codes	
9A	VIFE	Digital output	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 2 -> Output number 2
81	DIF	Data is 8 bit integer	

## MID energy meters

CO	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 3 -> Input number 3
81	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 4 -> Input number 4
C1	DIF	Data is 8 bit integer	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 3, storage bit $0=1$   in DIF -> Input number 3 stored state
C1	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 4, storage bit $0=1$ in DIF -> Input number 4 stored state
8 E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
FD	VIF	Extension of VIF-codes	
E1	VIFE	Cumulation counter	
00	VIFE	Status: No error	
150000000000	Data	21	Comments: Unit 4 -> Input number 4 pulse counter
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	

## MID energy meters

FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
520000000000	Data	0.52 kWh	Comments: No DIFE -> Unit 0 -> Resettable Active Energy Import
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
200000000000	Data	0.20 kWh	Comments: Unit 1 -> Resettable Active Energy Export
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
160000000000	Data	0.16 kvarh	Comments: Unit 2 -> Resettable Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
380000000000	Data	0.38 kvarh	Comments: Unit 3 -> Resettable   Reactive Energy Export
04	DIF	Data is 32 bit integer	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
02000000	Data	2	Comments: No DIFE gives Unit 0 -> Active Energy Import Reset Counter
84	DIF	Data is 32 bit integer	
40	DIFE	Unit bit $0=1$	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
01000000	Data	1	Comments: Unit 1 -> Active Energy Export Reset Counter
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	

## MID energy meters

40	DIFE	Unit bit $1=1$	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
03000000	Data	3	Comments: Unit 2 -> Reactive Energy Import Reset Counter
84	DIF	Data is 32 bit integer	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
04000000	Data	4	Comments: Unit 3 -> Reactive   Energy Export Reset Counter
OE	DIF	Data is 12 digit BCD	
FF	VIF	Next byte is manufacturer specific	
F9	VIFE	VIF extension of manufacturer specific VIFE	
C4	VIFE	Active Energy in CO2	
00	VIFE	Status: No error	
511200000000	Data	1.251 kg	
OE	DIF	Data is 12 digit BCD	
FF	VIF	Next byte is manufacturer specific	
F9	VIFE	VIF extension of manufacturer specific VIFE	
C9	VIFE	Active Energy in Currency	
00	VIFE	Status: No error	
260100000000	Data	1.26	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A4	VIFE	Conversion factor for active energy import in CO2	
00	VIFE	Status: No error	
E8 030000	Data	1000	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A5	VIFE	Conversion factor for active energy import in Currency	
00	VIFE	Status: No error	
E8 030000	Data	1000	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	

## MID energy meters

630100000000	Data	1.63 kVAh	Comments: No DIFE -> Tariff 0, Unit   $4->$ Total Apparent Energy Import
8 E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	Comments: No DIFE -> Tariff 0, Unit   45-> Total Apparent Energy Export
930000000000	Data	0.93 kVAh	
$1 F$	DIF	More data in next telegram	
99	Checksum		
16	End		

Telegram 5

68	Start char		
F7	Length		
F7	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number	00001234	
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
23	Access number		
00	Status		
0000	Signature		
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
410000000000	Data	0.41 kWh	Comments: No DIFE -> Tariff 0, Unit 0-> Active Energy Import L1
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
410000000000	Data	0.41 kWh	
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	

## MID energy meters

FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
410000000000	Data	0.41 kWh	
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
230000000000	Data	0.23 kWh	Comments: Unit 1 -> Active Energy Export L1
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
230000000000	Data	0.23 kWh	
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
230000000000	Data	0.23 kWh	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
140000000000	Data	0.14 kvarh	Comments: Unit 2 -> Reactive Energy Import L1
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
140000000000	Data	0.14 kvarh	

## MID energy meters

8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
140000000000	Data	0.14 kvarh	
8 E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
410000000000	Data	0.41 kvarh	Comments: Unit 3 -> Reactive   Energy Export L1
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
410000000000	Data	0.41 kvarh	
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
410000000000	Data	0.41 kvarh	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
540000000000	Data	0.54 kVAh	Comments: Unit 4 -> Apparent Energy Import L1

## MID energy meters

8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
540000000000	Data	0.54 kVAh	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
540000000000	Data	0.54 kVAh	
8 E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit 1 = 0	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
310000000000	Data	0.31 kVAh	Comments: Unit 5 -> Apparent Energy Export L1
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
300000000000	Data	0.30 kVAh	
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	

## MID energy meters

83	VIFE	L3	
00	VIFE	Status: No error	
300000000000	Data	0.30 kVAh	
$1 F$	DIF	More data in next telegram	
48	Checksum		
16	End		

Telegram 6

68	Start char		
CE	Length		
CE	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number	00001234	
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
24	Access number		
00	Status		
0000	Signature		
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
CO	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit 2 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
$\begin{aligned} & 360000000000 \\ & 0000 \end{aligned}$	Data	0.54 kWh	Comments: Tariff 0, Unit 6 -> Total Active Energy Net
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
CO	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
$\begin{aligned} & 120000000000 \\ & 0000 \end{aligned}$	Data	0.18 kWh	Comments: Tariff 0, Unit 6, L1 -> Active Energy Net L1
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	

## MID energy meters

CO	DIFE	Unit bit 1 = 1	
40	DIFE	Unit bit 2 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
$\begin{aligned} & 120000000000 \\ & 0000 \end{aligned}$	Data	0.18 kWh	
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit 1 = 1	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
$\begin{aligned} & 120000000000 \\ & 0000 \end{aligned}$	Data	0.18 kWh	
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit 0 = 1	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
BO FF FF FF FF FF FF FF	Data	-0.80 kvarh	Comments: Tariff 0, Unit 7 -> Total Reactive Energy Net
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit 2 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
E6 FF FF FF FF FF FF FF	Data	-0.26 kvarh	Comments: Tariff 0, Unit 7, L1 -> Reactive Energy Net L1
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit 0 = 0	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
E6 FF FF FF FF FF FF	Data	-0.26 kvarh	

## MID energy meters

FF			
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
E6 FF FF FF FF FF FF FF	Data	-0.26 kvarh	
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit 0 = 0	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
$\begin{aligned} & 470000000000 \\ & 0000 \end{aligned}$	Data	0.71 kVAh	Comments: Tariff 0, Unit 8 -> Total Apparent Energy Net
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit 0 = 0	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
$\begin{aligned} & 180000000000 \\ & 0000 \end{aligned}$	Data	0.24 kVAh	Comments: Tariff 0, Unit 8, L1 -> Apparent Energy Net L1
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
$\begin{aligned} & 170000000000 \\ & 0000 \\ & \hline \end{aligned}$	Data	0.23 kVAh	
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	

## MID energy meters

80	DIFE	Unit bit 2 = 0	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
170000000000	Data	0.23 kVAh	
0000	DIF	Last telegram	
$0 F$	Checksum		
B7	End		
16			

### 5.2.3 Example for telegrams 1 to 6 with $\mathbf{B 2 4}$ (all values are hexadecimal)

Telegram 1

68	Start char		
BC	Length		
BC	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number	00001234	
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
01	Access number		
00	Status		
0000	Signature		
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
367700000000	Data	77.36 kWh	Comments: No DIFE -> Tariff 0, Unit 0 -> Total Active Energy Import
8E	DIF	Data is 12 digit BCD	
10	DIFE	Tariff 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
173800000000	Data	38.17 kWh	Comments: Tariff 1 and unit 0 in DIFE -> Tariff 1 Active Energy Import
8E	DIF	Data is 12 digit BCD	

## MID energy meters

20	DIFE	Tariff 2	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
193900000000	Data	39.19 kWh	
8E	DIF	Data is 12 digit BCD	
40	DIFE	Export	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
394600000000	Data	46.39 kWh	Comments: Tariff 0, Unit 1 in DIFE >Total Active Energy Export
8E	DIF	Data is 12 digit BCD	
50	DIFE	Tariff 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
671400000000	Data	14.67 kWh	
8 E	DIF	Data is 12 digit BCD	
60	DIFE	Tariff 2	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
713100000000	Data	31.71 kWh	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
93	VIFE	Active tariff	
00	VIFE	Status: No error	
02	Data	Active tariff is 2	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
AO	VIFE	CT numerator (primary current marking of CT)	
00	VIFE	Status: No error	
F4 010000	Data	500	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A1	VIFE	VT numerator (primary voltage marking of VT)	
15	VIFE	Status: No data available	
00000000	Data		Comments: B24 does not support VT's or (only CT's) and VT settings are therefore marked as "Not available"
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A2	VIFE	CT denominator (secondary current marking of CT)	
00	VIFE	Status: No error	
05000000	Data	5	

## MID energy meters

04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A3	VIFE	VT denominator (secondary voltage marking of VT)	
15	VIFE	Status: No data available	
00000000	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A6	VIFE	Error flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A7	VIFE	Warning flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A8	VIFE	Information flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
07	DIF	Data is 64 bit integer	
FF	VIF	Next byte is manufacturer specific	
A9	VIFE	Alarm flags	
00	VIFE	Status: No error	
$\begin{aligned} & 000000000000 \\ & 0000 \end{aligned}$	Data		
OD	DIF	Variable length of ASCII data	
FD	VIF	Extension of VIF-codes	
8 E	VIFE	Firmware version	
00	VIFE	Status: No error	
$\begin{aligned} & 07302 E 3432 \text { 2E } 31 \\ & 42 \end{aligned}$	Data	7 ASCII bytes containing "B1.24.0"	
OD	DIF	Variable length of data	
FF	VIF	Next byte is manufacturer specific	
AA	VIFE	Type designation	
00	VIFE	Status: No error	
$\begin{aligned} & \text { OB 4A } 3031 \text { 2D } 33 \\ & 353320343242 \end{aligned}$	Data	11 ASCII bytes containing "B24 31310J"	
1 F	DIF	More data in next telegram	
4F	Checksum		
16	End		

## MID energy meters

Telegram 2

68	Start char		
F2	Length		
F2	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number		
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
02	Access number		
00	Status		
0000	Signature		
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
98	VIFE	Power fail counter	
00	VIFE	Status: No error	
7B 000000	Data	123	
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
EB 535300	Data	54609.71 W	Comments: No VIFE for phase number, No DIFE gives Unit 0 -> Total Active Power
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
7209 1B 00	Data	17718.90 W	Comments: VIFE for phase number, No DIFE gives Unit 0 -> Active Power L1
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
A3 06 1D 00	Data	19022.43 W	
04	DIF	Data is 32 bit integer	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	

## MID energy meters

00	VIFE	Status: No error	
D7 43 1B 00	Data	17868.39 W	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
84 9F 4A 00	Data	48905.00 var	Comments: No VIFE for phase number, Unit 2 -> Total Reactive Power
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit 0 = 0	
40	DIFE	Unit bit 1 = 1	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
87 A4 1600	Data	14839.11 var	Comments: VIFE for phase number, Unit 2 -> Reactive Power L1
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit 0 = 0	
40	DIFE	Unit bit $1=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
55 E9 1900	Data	16981.33 var	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
A8 11 1A 00	Data	17084.56 var	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
A9	VIF	Power with 2 decimals	
00	VIFE	Status: No error	
6E EA 6F 00	Data	73345.10 VA	Comments: No VIFE for phase number, Unit 4 -> Total Apparent Power
84	DIF	Data is 32 bit integer	

## MID energy meters

80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
55462300	Data	23117.65 VA	Comments: VIFE for phase number, Unit 4 -> Apparent Power L1
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
AF E9 2600	Data	25501.91 VA	
84	DIF	Data is 32 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
A9	VIF	Power with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
6A BA 2500	Data	24725.54 VA	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
03090000	Data	230.7 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
OA 090000	Data	231.4 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	

## MID energy meters

C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
08090000	Data	231.2 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
85	VIFE	L1-L2	
00	VIFE	Status: No error	
9E OF 0000	Data	399.8 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
86	VIFE	L3-L2	
00	VIFE	Status: No error	
A3 OF 0000	Data	400.3 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
C8	VIFE	Volt with 1 decimal	
FF	VIFE	Next byte is manufacturer specific	
87	VIFE	L1-L3	
00	VIFE	Status: No error	
A6 OF 0000	Data	400.6 V	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
D9	VIFE	Ampere with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
7C 870100	Data	100.220 A	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	
D9	VIFE	Ampere with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
A8 AE 0100	Data	110.248 A	
04	DIF	Data is 32 bit integer	
FD	VIF	Extension of VIF-codes	

## MID energy meters

D9	VIFE	Ampere with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
C5 A1 01 00	Data	106.949 A	
OA	DIF	Data is 4 digit BCD	
FF	VIF	Next byte is manufacturer specific	
D9	VIFE	Frequency with 2 decimals	
00	VIFE	Status: No error	
8349	Data	49.83 Hz	
$1 F$	DIF	More data in next telegram	
27	Checksum		
16	End		

Telegram 3

68	Start char		
95	Length		
95	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data   respond		
3412 00 00	Serial number		
$2 E 28$	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
02	Status		
00	Signature		
0000	DIF	Data is 16 bit integer	
02	VIF	Next byte is manufacturer specific	
FF	VIFE	Power factor with 3 decimals	
E0	Status: No error	Comments: No VIFE for phase   number $->$ Total Power Factor	
00	Data	0.745	
E9 02	VIF	Data is 16 bit integer	
02	VIF	Next byte is manufacturer specific	
FF	VIFE	Sower factor with 3 decimals	
E0	VIFE		
81	FF		
00	VI		

## MID energy meters

FF 02	Data	0.767	Comments: VIFE for phase number -   > Power Factor L1
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
EO	VIFE	Power factor with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
EA 02	Data	0.746	
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
EO	VIFE	Power factor with 3 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
D3 02	Data	0.723	
02	DIF	Data is 16 bit integer	
FF	VIF	Next byte is manufacturer specific	
D2	VIFE	Power factor angle with 1 decimal	
00	VIFE	Status: No error	
A3 01	Data	$41.9^{\circ}$	Comments: No VIFE for phase   number -> Total Power Factor Angle
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
605000000000	Data	50.60 kvarh	Comments: Tariff 0, Unit 2 -> Total Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
90	DIFE	Tariff 1, Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
563100000000	Data	31.56 kvarh	Comments: Tariff 1 and unit 2 in DIFE -> Tariff 1 Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
20	DIFE	Tariff 2, Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
041900000000	Data	19.04 kvarh	
8 E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	

## MID energy meters

40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
706200000000	Data	62.70 kvarh	Comments: Tariff 0, Unit 2 -> Total Reactive Energy Export
8E	DIF	Data is 12 digit BCD	
D0	DIFE	Tariff 1, Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
871300000000	Data	13.87 kvarh	Comments: Tariff 1 and unit 2 in DIFE -> Tariff 1 Reactive Energy Export
8E	DIF	Data is 12 digit BCD	
EO	DIFE	Tariff 2, Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
834800000000	Data	48.83 kvarh	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
AD	VIFE	Number of elements	
00	VIFE	Status: No error	
03	Data	3	
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
00	VIFE	Status: No error	
01	Data	1	Comments: No VIFE for phase number -> Total Active Quadrant
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
01	Data	1	Comments: VIFE for phase number -   > Active Quadrant L1
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
01	Data	1	Comments: VIFE for phase number -

## MID energy meters

			> Active Quadrant L2
01	DIF	Data is 8 bit integer	
FF	VIF	Next byte is manufacturer specific	
97	VIFE	Active quadrant	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
01	Data	1	Comments: VIFE for phase number   $>$
1F Active Quadrant L3			

Telegram 4

68	Start char		
DC	Length		
DC	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number		
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
02	Access number		
00	Status		
0000	Signature		
81	DIF	Data is 8 bit integer	
40	DIFE	Unit bit $0=1$	
FD	VIF	Extension of VIF-codes	
9A	VIFE	Digital output	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 1 -> Output number 1
81	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
FD	VIF	Extension of VIF-codes	
9A	VIFE	Digital output	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 2 -> Output number 2

## MID energy meters

81	DIF	Data is 8 bit integer	
CO	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
00	Data	0	Comments: Unit 3 -> Input number 3
81	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	
FD	VIF	Extension of VIF-codes	
9 B	VIFE	Digital input	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 4 -> Input number 4
C1	DIF	Data is 8 bit integer	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 3, storage bit $0=1$   in DIF -> Input number 3 stored state
C1	DIF	Data is 8 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
FD	VIF	Extension of VIF-codes	
9B	VIFE	Digital input	
00	VIFE	Status: No error	
01	Data	1	Comments: Unit 4, storage bit $0=1$ in DIF -> Input number 4 stored state
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
FD	VIF	Extension of VIF-codes	
E1	VIFE	Cumulation counter	
00	VIFE	Status: No error	
290000000000	Data	29	Comments: Unit 4 -> Input number 4 pulse counter
OE	DIF	Data is 12 digit BCD	

## MID energy meters

84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
964400000000	Data	44.96 kWh	Comments: No DIFE -> Unit 0 -> Resettable Active Energy Import
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
323100000000	Data	31.32 kWh	Comments: Unit 1 -> Resettable Active Energy Export
8 E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
620800000000	Data	8.62 kvarh	Comments: Unit 2 -> Resettable Reactive Energy Import
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
F2	VIFE	Resettable energy *1	
00	VIFE	Status: No error	
205500000000	Data	55.20 kvarh	Comments: Unit 3 -> Resettable Reactive Energy Export
04	DIF	Data is 32 bit integer	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
03000000	Data	3	Comments: No DIFE gives Unit 0 -> Active Energy Import Reset Counter
84	DIF	Data is 32 bit integer	
40	DIFE	Unit bit $0=1$	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
02000000	Data	2	Comments: Unit 1 -> Active Energy Export Reset Counter
84	DIF	Data is 32 bit integer	

## MID energy meters

80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
04000000	Data	4	Comments: Unit 2 -> Reactive Energy Import Reset Counter
84	DIF	Data is 32 bit integer	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
FF	VIFE	Next byte is manufacturer specific	
F1	VIFE	Reset counter *1	
00	VIFE	Status: No error	
02000000	Data	2	Comments: Unit 3 -> Reactive Energy Export Reset Counter
OE	DIF	Data is 12 digit BCD	
FF	VIF	Next byte is manufacturer specific	
F9	VIFE	VIF extension of manufacturer specific VIFE	
C4	VIFE	Active Energy in CO2	
00	VIFE	Status: No error	
237407000000	Data	77.423 kg	
OE	DIF	Data is 12 digit BCD	
FF	VIF	Next byte is manufacturer specific	
F9	VIFE	VIF extension of manufacturer specific VIFE	
C9	VIFE	Active Energy in Currency	
00	VIFE	Status: No error	
437700000000	Data	77.43	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A4	VIFE	Conversion factor for active energy import in CO2	
00	VIFE	Status: No error	
E8 030000	Data	1000	
04	DIF	Data is 32 bit integer	
FF	VIF	Next byte is manufacturer specific	
A5	VIFE	Conversion factor for active energy import in Currency	
00	VIFE	Status: No error	
E8 030000	Data	1000	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	

## MID energy meters

00	VIFE	Status: No error	
140501000000	Data	105.14 kVAh	Comments: No DIFE -> Tariff 0, Unit   4 -> Total Apparent Energy Import
8 E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
946200000000	Data	62.94 kVAh	Comments: No DIFE -> Tariff 0, Unit   $45->$ Total Apparent Energy Export
1 F	DIF	More data in next telegram	
D3			
16	Checksum		
End			

Telegram 5

68	Start char		
F7	Length		
F7	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number	00001234	
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
01	Access number		
00	Status		
0000	Signature		
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
862500000000	Data	25.86 kWh	Comments: No DIFE -> Tariff 0, Unit 0 -> Active Energy Import L1
OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
832500000000	Data	25.83 kWh	

## MID energy meters

OE	DIF	Data is 12 digit BCD	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
732500000000	Data	25.73 kWh	
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
501500000000	Data	15.50 kWh	Comments: Unit 1 -> Active Energy Export L1
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
491500000000	Data	15.49 kWh	
8E	DIF	Data is 12 digit BCD	
40	DIFE	Unit bit $0=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
381500000000	Data	15.38 kWh	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit 1 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
661600000000	Data	16.66 kvarh	Comments: Unit 2 -> Reactive Energy Import L1
8 E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	

## MID energy meters

00	VIFE	Status: No error	
851600000000	Data	16.85 kvarh	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
121700000000	Data	17.12 kvarh	
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
162100000000	Data	21.16 kvarh	Comments: Unit 3 -> Reactive   Energy Export L1
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
912000000000	Data	20.91 kvarh	
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
40	DIFE	Unit bit $1=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
632000000000	Data	20.63 kvarh	
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	

## MID energy meters

863400000000	Data	34.86 kVAh	Comments: Unit 4 -> Apparent Energy Import L1
8E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
073500000000	Data	35.07 kVAh	
8 E	DIF	Data is 12 digit BCD	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
223500000000	Data	35.22 kVAh	
8 E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
252100000000	Data	21.25 kVAh	Comments: Unit 5 -> Apparent Energy Export L1
8E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit 1 = 0	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
982000000000	Data	20.98 kVAh	
8 E	DIF	Data is 12 digit BCD	
C0	DIFE	Unit bit $0=1$	
80	DIFE	Unit bit $1=0$	
40	DIFE	Unit bit 2 = 1	

## MID energy meters

84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
702000000000	Data	20.70 kVAh	
$1 F$	DIF	More data in next telegram	
EF	Checksum		
16	End		

Telegram 6

68	Start char		
CE	Length		
CE	Length		
68	Start char		
08	RSP_UD		
00	Primary address		
72	Variable data respond		
34120000	Serial number	00001234	
2E 28	Manufacturer	JAN	
20	Version		
02	Medium	Electricity	
01	Access number		
00	Status		
0000	Signature		
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit 0 = 0	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
$\begin{aligned} & 230 C 00000000 \\ & 0000 \\ & \hline \end{aligned}$	Data	31.07 kWh	Comments: Tariff 0, Unit 6 -> Total Active Energy Net
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit 0 = 0	
C0	DIFE	Unit bit 1 = 1	
40	DIFE	Unit bit 2 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
OD 0400000000	Data	10.37 kWh	Comments: Tariff 0, Unit 6, L1->

## MID energy meters

0000			Active Energy Net L1
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
$\begin{aligned} & 090400000000 \\ & 0000 \end{aligned}$	Data	10.33 kWh	
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit 1 = 1	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
$\begin{aligned} & \text { OC } 0400000000 \\ & 0000 \end{aligned}$	Data	10.36 kWh	
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit $0=1$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
4C FB FF FF FF FF FF FF	Data	-12.04 kvarh	Comments: Tariff 0, Unit 7 -> Total Reactive Energy Net
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit 1 = 1	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
3F FE FF FF FF FF FF FF	Data	-4.49 kvarh	Comments: Tariff 0, Unit 7, L1 -> Reactive Energy Net L1
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	

## MID energy meters

82	VIFE	L2	
00	VIFE	Status: No error	
6B FE FF FF FF FF FF FF	Data	-4.05 kvarh	
87	DIF	Data is 64 bit integer	
C0	DIFE	Unit bit $0=0$	
C0	DIFE	Unit bit $1=1$	
40	DIFE	Unit bit $2=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
A2 FE FF FF FF FF FF FF	Data	-3.50 kvarh	
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
00	VIFE	Status: No error	
$\begin{aligned} & 801000000000 \\ & 0000 \\ & \hline \end{aligned}$	Data	42.24 kVAh	Comments: Tariff 0, Unit 8 -> Total Apparent Energy Net
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
81	VIFE	L1	
00	VIFE	Status: No error	
$\begin{aligned} & 520500000000 \\ & 0000 \end{aligned}$	Data	13.62 kVAh	Comments: Tariff 0, Unit 8, L1 -> Apparent Energy Net L1
87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit 3 = 1	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
82	VIFE	L2	
00	VIFE	Status: No error	
$\begin{aligned} & 810500000000 \\ & 0000 \\ & \hline \end{aligned}$	Data	14.09 kVAh	

## MID energy meters

87	DIF	Data is 64 bit integer	
80	DIFE	Unit bit $0=0$	
80	DIFE	Unit bit $1=0$	
80	DIFE	Unit bit $2=0$	
40	DIFE	Unit bit $3=1$	
84	VIF	Energy with 2 decimals	
FF	VIFE	Next byte is manufacturer specific	
83	VIFE	L3	
00	VIFE	Status: No error	
$\begin{aligned} & \text { AD } 0500000000 \\ & 0000 \end{aligned}$	Data	14.53 kVAh	
OF	DIF	Last telegram	
46	Check		
16	End		

## MID energy meters

### 5.3 Sending data to the meters

This section contains a description of how the telegrams can be sent to the meters. Some telegrams contain data and others do not. The data from the telegrams is sometimes stored in the meter and sometimes used for the execution of certain actions. Telegrams without data usually trigger a certain action in the meter.

## Level of write access

Some commands can be protected with a password. Three different write access levels exist in total:

- Open
- Open with password
- Closed

The write access level can either be set via the buttons directly on the meter or via communication with the command level of write access.

If the write access level is set to open then the meter always accepts the command, as long as the meter is correctly addressed and the syntax and checksum are correct.

If the write access level is set to open with password then a command send password must be sent to the meter before the command, so that it accepts the command.

If the write access level is set to closed then the meter does not accept any commands, but instead merely responds with a confirmation character (E5 hex). In order to change this access level, this must be set to open with the buttons directly on the meter.

## Note

For commands that are not affected by the access level, a correct message with correct address, syntax and checksum is merely required.

## MID energy meters

### 5.3.1 Tariff setting

In case of meters with tariff control, the active tariff is set by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	07	L field, calculated from the C field to the last user data
3	1	07	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	01	DIF size, 8 Bit whole number
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	13	VIFE tariff
11	1	xx	New tariff
12	1	xx	CS checksum, calculated from the C field to the last data
13	1	16	Stop character

### 5.3.2 Setting the primary address

The primary address is set by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	06	L field, calculated from the C field to the last user data
3	1	06	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	01	DIF size, 8 Bit whole number
9	1	7 A	VIFE bus address
10	1	xx	New primary address
11	1	xx	CS checksum, calculated from the C field to the last data
12	16	Stop character	

## MID energy meters

### 5.3.3 Changing the Baud rate

The Baud rate of the electrical M-Bus interface is set by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	03	L field, calculated from the C field to the last user data
3	1	03	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	1	Bx CI field, new Baud rate (with $x=>8 . . \mathrm{F}$ )
8	1	xx	CS checksum, calculated from the C field to the last data
9	1	16	Stop character

### 5.3.4 Resetting the power failure meter

The power failure meter is reset to 0 by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	07	07 L field, calculated from the C field to the last user data
3	1	07	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	73 C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	00	00 DIF size, no data
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	98	VIFE number of power failures
11	1	07	Delete VIFE
12	1	xx	CS checksum, calculated from the C field to the last data
13	1	16	Stop character

## MID energy meters

### 5.3.5 Setting the current transformer conversion ratio (CT) - meter

The current transformer conversion ratio (CT) meter is set by the following command (all values are hexadecimal). The command is influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	$0 a$	L field, calculated from the C field to the last user data
3	1	$0 a$	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	04	DIF size, 32 Bit whole number
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	20	VIFE CT-ratio meter
$11 . .14$	4	xxxxxxxx	New meter CT-ratio
15	1	xx	CS checksum, calculated from the C field to the last data
16	1	16	Stop character

5.3.6 Setting the current transformer conversion ratio (CT) - denominator

The current transformer conversion ratio (CT) denominator is set by the following command (all values are hexadecimal). The command is influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	$0 a$	L field, calculated from the C field to the last user data
3	1	$0 a$	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	04	DIF size, 32 Bit whole number
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	22	VIFE CT-ratio denominator
$11 . .14$	4	xxxxxxxx	New denominator CT-ratio
15	1	xx	CS checksum, calculated from the C field to the last data
16	1	16	Stop character

## MID energy meters

### 5.3.7 Selecting status information

The type of status information sent is changed by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	07	L field, calculated from the C field to the last user data
3	1	07	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	01	DIF size, 8 B it whole number
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	15	VIFE status of values (status Byte of the values)
11	1	xx	$0=$ never, $1=$ status if not OK=always
12	1	xx	CS checksum, calculated from the C field to the last data
13	1	16	Stop character

### 5.3.8 Resetting the stored status for input 1

The stored status for input 1 is reset by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	08	L field, calculated from the C field to the last user data
3	1	08	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	C0	DIF size, no data, storage number
9	1	40	DIFE unit=1
10	1	FD	VIF extension of VIF codes
11	1	$9 B$	VIFE digital input
12	1	07	Delete VIFE
13	1	xX	CS checksum, calculated from the C field to the last data
14	1	16	Stop character

## MID energy meters

### 5.3.9 Resetting the stored status for input 2

The stored status for input 2 is reset by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	09	L field, calculated from the C field to the last user data
3	1	09	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	C0	DIF size, no data, storage number 1
9	1	80	DIFE unit=0
10	1	40	DIFE unit=2
11	1	FD	VIF extension of VIF codes
12	1	$9 B$	VIFE digital input
13	1	07	Delete VIFE
14	1	xx	CS checksum, calculated from the C field to the last data
15	1	16	Stop character

## MID energy meters

### 5.3.10 Resetting the input meter 1

The input meter 1 is reset by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	08	L field, calculated from the C field to the last user data
3	1	08	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	C0	DIF size, no data
9	1	40	DIFE unit=1
10	1	FD	VIF extension of VIF codes
11	1	$9 B$	VIFE total meter
12	1	07	Delete VIFE
13	1	xx	CS checksum, calculated from the C field to the last data
14	1	16	Stop character

### 5.3.11 Resetting the input meter 2

The input meter 2 is reset by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	09	L field, calculated from the C field to the last user data
3	1	09	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	80	DIF size, no data
9	1	80	DIFE unit=0
10	1	40	DIFE unit=2
11	1	FD	VIF extension of VIF codes
12	1	E1	VIFE total meter
13	1	07	Delete VIFE
14	1	xx	CS checksum, calculated from the C field to the last data
15	1	16	Stop character

## MID energy meters

### 5.3.12 Setting output 1

The status of output 1 is set by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	08	L field, calculated from the C field to the last user data
3	1	08	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	81	DIF size, 8 Bit whole number
9	1	40	DIFE unit=1
10	1	FD	VIF extension of VIF codes
11	1	1 A	VIFE digital output
12	1	xx	Output 1, new status
13	1	xx	CS checksum, calculated from the C field to the last data
14	1	16	Stop character

## MID energy meters

### 5.3.13 Setting output 2

The status of output 2 is set by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	09	L field, calculated from the C field to the last user data
3	1	09	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	81	DIF size, 8 Bit whole number
9	1	80	DIFE unit= 0
10	1	40	DIFE unit=1
11	1	FD	VIF extension of VIF codes
12	1	1 A	VIFE digital output
13	1	xx	Output 2, new status
14	1	xx	CS checksum, calculated from the C field to the last data
15	1	16	Stop character

## MID energy meters

### 5.3.14 Resetting power failure time duration

The time duration of power failures is reset by the following command (all values are hexadecimal). The command is not influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	07	L field, calculated from the C field to the last user data
3	1	07	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	00	DIF size, no data
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	EC	VIFE power failure time duration
11	1	07	Delete VIFE
12	1	xx	CS checksum, calculated from the C field to the last data
13	1	16	Stop character

### 5.3.15 Sending a password

Passwords are sent by the following command (all values are hexadecimal).

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	$0 E$	L field, calculated from the C field to the last user data
3	1	$0 E$	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	Xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	07	DIF size, 8 Byte whole number
9	1	FD	VIF extension of VIF codes
10	1	16	VIFE password
$11 \ldots 18$	8	xxxxxxxxxxxxxxxx	Password
19	1	xx	CS checksum, calculated from the C field to the last data
20	1	16	Stop character

## MID energy meters

### 5.3.16 Setting up a password

The password is set by the following command (all values are hexadecimal).

## Note

If the meter is password-protected, it is first necessary to send the old password before a new password can be set.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	$0 F$	L field, calculated from the C field to the last user data
3	1	$0 F$	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	07	DIF size, 8 Byte whole number
9	1	FD	VIF extension of VIF codes
10	1	96	VIFE password
11	1	00	Write VIFE (replace)
$12 \ldots 19$	8	xxxxxxxxxxxxxxxx	Password
20	1	xx	CS checksum, calculated from the C field to the last data
21	1	16	Stop character

### 5.3.17 Resetting logs

All log data is reset by the following command (all values are hexadecimal). The command is influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	08	L field, calculated from the C field to the last user data
3	1	08	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	00	DIF size, no data
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	F9	VIF extension of manufacturer-specific VIFEs, next VIFE gives the actual   meaning
11	1	xx	VIFE gives data to be deleted:   $\bullet$   85: Event log   $\bullet$
12	1	07	AE: System log   B0: Power quality log
13	1	xx	Delete VIFE
14	1	16	CS checksum, calculated from the C field to the last data

## MID energy meters

### 5.3.18 Setting the level of write access

The level of write access is set by the following command (all values are hexadecimal). The command is influenced by the set write protection level.

Byte no.	Size	Value	Description
1	1	68	Start character
2	1	07	L field, calculated from the C field to the last user data
3	1	07	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	01	DIF size, 8 Bit whole number
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	6 A	VIFE write control
11	1	xx	Write control (1: Closed, 2: Open with password, 3: Open)
12	1	xx	CS checksum, calculated from the C field to the last data
13	1	16	Stop character

## MID energy meters

### 5.3.19 Setting tariff sources

Tariffs can be controlled via inputs, communication or the internal clock.
The tariff source is set by the following command (all values are hexadecimal). The command is influenced by the set write protection level.

Byte   no.	Size	Value	Description
1	1	68	Start character
2	1	08	L field, calculated from the C field to the last user data
3	1	08	L field, repetition
4	1	68	Start character
5	1	$53 / 73$	C field, SND_UD
6	1	xx	A field, address
7	1	51	CI field, send data, LSB first
8	1	01	DIF size, 8 Bit whole number
9	1	FF	Next VIF Byte is manufacturer-specific
10	1	F9	VIF extension of manufacturer-specific VIFE s, next VIFE gives the actual   meaning
11	1	06	VIFE tariff source
12	1	xx	Tariff source (0: Internal clock, 1: Communication command, 2: Inputs)
13	1	xx	CS checksum, calculated from the C field to the last data
14	1	16	Stop character

MID energy meters

## EQ energy meters B-series Annex

## A Annex

## A. 1 Order information

## E nergy meter B 21

AC meter, 65 A , single phase $(1+\mathrm{N})$

Voltage V	Precision class	Inputs/outputs	Communication	Type	Order number	Pack. unit [pc.]	Wei. 1 pc. [kg]
$1 \times 230 \mathrm{VAC}$	Active energy: B (cl.1) Reactive energy: CI. 2	2 outputs, 2 inputs	-	B21 311-10J	14.01.353	1	0.14
			RS-485	B21 312-10J	14.01.354	1	0.15
			M-Bus	B21 313-10J	14.01.355	1	0.15

## E nergy meter B 23

Three-phase meter, 65 A, three-phase ( $3+N$ )

Voltage V	Precision class	Inputs/outputs	Communication	Type	Order number	Pack.   unit   [pc.]	Wei. $\mathbf{1}$   $\mathbf{p c .}$   $[\mathrm{kg}]$


$3 \times 230 / 400 \mathrm{~V} \mathrm{AC}$	Active energy: B (cl.1)   Reactive energy: CI. 2	2 outputs, 2 inputs	-	B23 311-10J	14.01.356	1	0.33
			RS-485	B23 312-10」	14.01.357	1	0.34
			M-Bus	B23 313-10J	14.01.358	1	0.35

## EQ energy meters B-series Annex

## Energy meter B24

Measurement transformer meter, 6 A, three-phase ( $3+N$ )

Voltage V	Precision class	Inputs/outputs	Communication	Type	Order number	Pack. unit [pc.]	Wei. 1 pc. [kg]
$3 \times 230 / 400 \mathrm{~V} \mathrm{AC}$	Active energy:   C (cl. 0.5 S )   Reactive energy: Cl .2	2 outputs, 2 inputs	-	B24 311-10	14.01.359	1	0.27
			RS-485	B24 312-10J	14.01.360	1	0.27
			M-Bus	B24 313-10J	14.01.361	1	0.29

## Contact

J anitza electronics GmbH	Note:
Vor dem Polstück 6	We reserve the right to make technical changes to
35633 Lahnau / Germany	document at any time without notice.
Tel.: +49 6441 9642-0	In case of orders, the agreed characteristics are decisive. J anitza GmbH accepts no responsibility
Fax: +49 6441 9642-30	whatsoever for any errors or incomplete information in this document.
Internet: www.janitza.de	
E-mail: info@janitza.de	objects and figures contained within it. Duplication, disclosure to third parties and exploitation of its contents - also extracts thereof - are prohibited without the prior written permission of J anitza GmbH.
	Copyright® 2016
	All rights reserved


[^0]:    *1 (not available with B21, B 23 and B24)

